Zeitschriftenartikel zum Thema „Catalysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Catalysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zhao, Xiaodan, und Lihao Liao. „Modern Organoselenium Catalysis: Opportunities and Challenges“. Synlett 32, Nr. 13 (11.05.2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Der volle Inhalt der QuelleZhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui und Liang Sun. „Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization“. Synthesis 50, Nr. 17 (08.08.2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.
Der volle Inhalt der QuelleDagorne, Samuel. „Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis“. Synthesis 50, Nr. 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Der volle Inhalt der QuelleFañanás-Mastral, Martín, Eva Rivera-Chao und Laura Fra. „Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons“. Synthesis 50, Nr. 19 (09.07.2018): 3825–32. http://dx.doi.org/10.1055/s-0037-1610434.
Der volle Inhalt der QuelleDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou und Shihu Jia. „Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols“. Synthesis 54, Nr. 07 (02.12.2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Der volle Inhalt der QuelleKaplunenko, Volodymyr, und Mykola Kosinov. „Electric field - induced catalysis. Laws of field catalysis“. InterConf, Nr. 26(129) (18.10.2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.
Der volle Inhalt der QuelleKhan, Mohammad Niyaz, und Ibrahim Isah Fagge. „Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review“. Progress in Reaction Kinetics and Mechanism 43, Nr. 1 (März 2018): 1–20. http://dx.doi.org/10.3184/146867818x15066862094905.
Der volle Inhalt der QuelleWilliams, Ian H. „Catalysis: transition-state molecular recognition?“ Beilstein Journal of Organic Chemistry 6 (03.11.2010): 1026–34. http://dx.doi.org/10.3762/bjoc.6.117.
Der volle Inhalt der QuelleShubina, Tatyana E., und Timothy Clark. „Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4“. Zeitschrift für Naturforschung B 65, Nr. 3 (01.03.2010): 347—r369. http://dx.doi.org/10.1515/znb-2010-0319.
Der volle Inhalt der QuelleHidayati, Nur, Rahmah Puspita Sari und Herry Purnama. „Catalysis of glycerol acetylation on solid acid catalyst: a review“. Jurnal Kimia Sains dan Aplikasi 23, Nr. 12 (14.01.2021): 414–23. http://dx.doi.org/10.14710/jksa.23.12.414-423.
Der volle Inhalt der QuelleBaráth, Eszter. „Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts“. Synthesis 52, Nr. 04 (02.01.2020): 504–20. http://dx.doi.org/10.1055/s-0039-1691542.
Der volle Inhalt der QuelleLilley, David M. J. „RNA catalysis: More than a messenger“. Biochemist 28, Nr. 2 (01.04.2006): 7–10. http://dx.doi.org/10.1042/bio02802007.
Der volle Inhalt der QuelleTaqui Khan, M. M. „Carbonylation Reactions in Aqueous or Mixed Solvent Systems“. Platinum Metals Review 35, Nr. 2 (01.04.1991): 70–82. http://dx.doi.org/10.1595/003214091x3527082.
Der volle Inhalt der QuelleYe, Rong, Tyler J. Hurlburt, Kairat Sabyrov, Selim Alayoglu und Gabor A. Somorjai. „Molecular catalysis science: Perspective on unifying the fields of catalysis“. Proceedings of the National Academy of Sciences 113, Nr. 19 (25.04.2016): 5159–66. http://dx.doi.org/10.1073/pnas.1601766113.
Der volle Inhalt der QuelleHabib, Umair, Farooq Ahmad, Muhammad Awais, Namisa Naz, Maira Aslam, Malka Urooj, Anam Moqeem et al. „Sustainable Catalysis: Navigating Challenges and Embracing Opportunities for a Greener Future“. Journal of Chemistry and Environment 2, Nr. 2 (04.10.2023): 14–53. http://dx.doi.org/10.56946/jce.v2i2.205.
Der volle Inhalt der QuelleKim, Byungjun, Yongjae Kim und Sarah Yunmi Lee. „Stereoselective Michael Additions of Arylacetic Acid Derivatives by Asymmetric Organocatalysis“. Synlett 33, Nr. 07 (05.01.2022): 609–16. http://dx.doi.org/10.1055/s-0041-1737323.
Der volle Inhalt der QuelleMotokura, Ken, und Kyogo Maeda. „Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation“. Synthesis 53, Nr. 18 (09.04.2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Der volle Inhalt der QuelleIglesias, Daniel, und Michele Melchionna. „Enter the Tubes: Carbon Nanotube Endohedral Catalysis“. Catalysts 9, Nr. 2 (01.02.2019): 128. http://dx.doi.org/10.3390/catal9020128.
Der volle Inhalt der QuelleWan, Qiang, Sen Lin und Hua Guo. „Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights“. Molecules 27, Nr. 12 (10.06.2022): 3734. http://dx.doi.org/10.3390/molecules27123734.
Der volle Inhalt der QuelleLomic, Gizela, Erne Kis, Goran Boskovic und Radmila Marinkovic-Neducin. „Application of scanning electron microscopy in catalysis“. Acta Periodica Technologica, Nr. 35 (2004): 67–77. http://dx.doi.org/10.2298/apt0435067l.
Der volle Inhalt der QuelleCrawford, Jennifer, und Matthew Sigman. „Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?“ Synthesis 51, Nr. 05 (08.01.2019): 1021–36. http://dx.doi.org/10.1055/s-0037-1611636.
Der volle Inhalt der QuellePonce, Adrian. „Radionuclide-induced defect sites in iron-bearing minerals may have accelerated the emergence of life“. Interface Focus 9, Nr. 6 (18.10.2019): 20190085. http://dx.doi.org/10.1098/rsfs.2019.0085.
Der volle Inhalt der QuelleLi, Shangkun, Rizwan Ahmed, Yanhui Yi und Annemie Bogaerts. „Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis“. Catalysts 11, Nr. 5 (01.05.2021): 590. http://dx.doi.org/10.3390/catal11050590.
Der volle Inhalt der QuelleYap, Daryl Q. J., Raju Cheerlavancha, Renecia Lowe, Siyao Wang und Luke Hunter. „Investigation of cis- and trans-4-Fluoroprolines as Enantioselective Catalysts in a Variety of Organic Transformations“. Australian Journal of Chemistry 68, Nr. 1 (2015): 44. http://dx.doi.org/10.1071/ch14129.
Der volle Inhalt der QuelleAbu-Reziq, Raed, und Howard Alper. „Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis“. Applied Sciences 2, Nr. 2 (26.03.2012): 260–76. http://dx.doi.org/10.3390/app2020260.
Der volle Inhalt der QuelleRoss, Julian. „API Abstracts - Catalysts and Catalysis“. Applied Catalysis 30, Nr. 1 (März 1987): 192. http://dx.doi.org/10.1016/s0166-9834(00)81032-5.
Der volle Inhalt der QuelleCatlow, Richard. „Modelling of catalysts and catalysis“. Journal of Computer-Aided Materials Design 3, Nr. 1-3 (August 1996): 56–60. http://dx.doi.org/10.1007/bf01185636.
Der volle Inhalt der QuelleDegnan, Tom. „Green catalysts and green catalysis“. Focus on Catalysts 2024, Nr. 9 (September 2024): 1. http://dx.doi.org/10.1016/j.focat.2024.09.001.
Der volle Inhalt der QuelleWu, Zhiyi, Jiahui Shen, Chaoran Li, Chengcheng Zhang, Chunpeng Wu, Zimu Li, Xingda An und Le He. „Niche Applications of MXene Materials in Photothermal Catalysis“. Chemistry 5, Nr. 1 (06.03.2023): 492–510. http://dx.doi.org/10.3390/chemistry5010036.
Der volle Inhalt der QuelleSaha, Debasree, und Chhanda Mukhopadhyay. „Metal Nanoparticles: An Efficient Tool for Heterocycles Synthesis and Their Functionalization via C-H Activation“. Current Organocatalysis 6, Nr. 2 (24.06.2019): 79–91. http://dx.doi.org/10.2174/2213337206666181226152743.
Der volle Inhalt der QuelleKobayashi, Shū, und Kei Manabe. „Green Lewis acid catalysis in organic synthesis“. Pure and Applied Chemistry 72, Nr. 7 (01.01.2000): 1373–80. http://dx.doi.org/10.1351/pac200072071373.
Der volle Inhalt der QuelleNori, Valeria, Fabio Pesciaioli, Arianna Sinibaldi, Giuliana Giorgianni und Armando Carlone. „Boron-Based Lewis Acid Catalysis: Challenges and Perspectives“. Catalysts 12, Nr. 1 (22.12.2021): 5. http://dx.doi.org/10.3390/catal12010005.
Der volle Inhalt der QuelleTrunschke, Annette, Giulia Bellini, Maxime Boniface, Spencer J. Carey, Jinhu Dong, Ezgi Erdem, Lucas Foppa et al. „Towards Experimental Handbooks in Catalysis“. Topics in Catalysis 63, Nr. 19-20 (06.10.2020): 1683–99. http://dx.doi.org/10.1007/s11244-020-01380-2.
Der volle Inhalt der QuelleLilley, David M. J. „Mechanisms of RNA catalysis“. Philosophical Transactions of the Royal Society B: Biological Sciences 366, Nr. 1580 (27.10.2011): 2910–17. http://dx.doi.org/10.1098/rstb.2011.0132.
Der volle Inhalt der QuelleGarcía-Álvarez, Joaquín. „Special Issue: “Advances in Homogeneous Catalysis”“. Molecules 25, Nr. 7 (25.03.2020): 1493. http://dx.doi.org/10.3390/molecules25071493.
Der volle Inhalt der QuelleLi, Feng, und Hao Li. „Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions“. Innovation & Technology Advances 2, Nr. 1 (12.03.2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Der volle Inhalt der QuelleClerici, Mario G. „Zeolites for Fine Chemical Production State of Art and Perspectives“. Eurasian Chemico-Technological Journal 3, Nr. 4 (10.07.2017): 231. http://dx.doi.org/10.18321/ectj573.
Der volle Inhalt der QuelleSingh, Keisham. „Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts“. Catalysts 9, Nr. 2 (12.02.2019): 173. http://dx.doi.org/10.3390/catal9020173.
Der volle Inhalt der QuelleGai, P. L., K. Kourtakis, H. Dindi und S. Ziemecki. „Novel Xerogel Catalyst Materials for Hydrogenation Reactions and the Role of Atomic Scale Interfaces“. Microscopy and Microanalysis 5, S2 (August 1999): 704–5. http://dx.doi.org/10.1017/s1431927600016846.
Der volle Inhalt der QuelleJianchen, Wang, Kang Yong und Fangkuan Sun. „Mass production of thermally stable Pt single-atom catalysts for the catalytic oxidation of sulfur dioxide“. Catalysis Science & Technology 12, Nr. 1 (2022): 124–34. http://dx.doi.org/10.1039/d1cy01578h.
Der volle Inhalt der QuelleShetty, Apoorva, Vandana Molahalli, Aman Sharma und Gurumurthy Hegde. „Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future“. Catalysts 13, Nr. 1 (23.12.2022): 20. http://dx.doi.org/10.3390/catal13010020.
Der volle Inhalt der QuelleChang Chien, Tzu-Chin, und Murielle F. Delley. „Interfacial Chemistry and Catalysis of Inorganic Materials“. CHIMIA 78, Nr. 1/2 (28.02.2024): 7–12. http://dx.doi.org/10.2533/chimia.2024.7.
Der volle Inhalt der QuelleMaksimchuk, Nataliya V., Olga V. Zalomaeva, Igor Y. Skobelev, Konstantin A. Kovalenko, Vladimir P. Fedin und Oxana A. Kholdeeva. „Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, Nr. 2143 (14.03.2012): 2017–34. http://dx.doi.org/10.1098/rspa.2012.0072.
Der volle Inhalt der QuelleLeenders, Stefan H. A. M., Rafael Gramage-Doria, Bas de Bruin und Joost N. H. Reek. „Transition metal catalysis in confined spaces“. Chemical Society Reviews 44, Nr. 2 (2015): 433–48. http://dx.doi.org/10.1039/c4cs00192c.
Der volle Inhalt der QuellePanchishnyi, V. I., und I. Yu Vorobiev. „Role of oxidation catalysis in after-treatment of exhaust gases of diesel engines“. Trudy NAMI, Nr. 2 (12.07.2023): 18–30. http://dx.doi.org/10.51187/0135-3152-2023-2-18-30.
Der volle Inhalt der QuelleShen, Siqi, Yuanyuan Sun, Hao Sun, Yuepeng Pang, Shuixin Xia, Taiqiang Chen, Shiyou Zheng und Tao Yuan. „Research Progress in ZIF-8 Derived Single Atomic Catalysts for Oxygen Reduction Reaction“. Catalysts 12, Nr. 5 (07.05.2022): 525. http://dx.doi.org/10.3390/catal12050525.
Der volle Inhalt der QuelleBOUSBA, DALILA, CHAFIA SOBHI, AMNA ZOUAOUI und SOUAD BOUASLA. „Synthesis of activated carbon sand their application in the synthesis of monometallic and bimetallic supported catalysts“. Algerian Journal of Signals and Systems 5, Nr. 4 (15.12.2020): 190–96. http://dx.doi.org/10.51485/ajss.v5i4.116.
Der volle Inhalt der QuelleSieber, Joshua D., und Toolika Agrawal. „Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies“. Synthesis 52, Nr. 18 (25.05.2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.
Der volle Inhalt der QuelleOllevier, Thierry. „Iron bis(oxazoline) complexes in asymmetric catalysis“. Catalysis Science & Technology 6, Nr. 1 (2016): 41–48. http://dx.doi.org/10.1039/c5cy01357g.
Der volle Inhalt der QuelleHenderson, Alexander S., John F. Bower und M. Carmen Galan. „Carbohydrates as enantioinduction components in stereoselective catalysis“. Organic & Biomolecular Chemistry 14, Nr. 17 (2016): 4008–17. http://dx.doi.org/10.1039/c6ob00368k.
Der volle Inhalt der Quelle