Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Catalyse de fer“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Catalyse de fer" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Catalyse de fer"
Siffert, B., und A. Naidja. „Decarboxylation catalytique de l'acide oxaloacetique en presence de montmorillonite“. Clay Minerals 22, Nr. 4 (Dezember 1987): 435–46. http://dx.doi.org/10.1180/claymin.1987.022.4.07.
Der volle Inhalt der QuelleD'Hont, M., und J. C. Jungers. „Contribution à l'étude du mécanisme de la catalyse hétérogène: L'Activation de l'Azote par le fer et le Nickel“. Bulletin des Sociétés Chimiques Belges 58, Nr. 10-12 (01.09.2010): 450–59. http://dx.doi.org/10.1002/bscb.19490581004.
Der volle Inhalt der QuelleJurkowski, Artur, und Zofia Lendzion-Bieluń. „Determination of Fe2+/Fe3+ mole ratio based on the change of precursor lattice parameters of wustite based iron catalysts for the ammonia synthesis“. Polish Journal of Chemical Technology 21, Nr. 3 (01.09.2019): 48–52. http://dx.doi.org/10.2478/pjct-2019-0029.
Der volle Inhalt der QuelleSun, Xinhui, Antonios Arvanitis, Devaiah Damma, Noe T. Alvarez, Vesselin Shanov, Panagiotis G. Smirniotis und Junhang Dong. „Carbon Nanotube Formation on Cr-Doped Ferrite Catalyst during Water Gas Shift Membrane Reaction: Mechanistic Implications and Extended Studies on Dry Gas Conversions“. Catalysts 10, Nr. 8 (12.08.2020): 927. http://dx.doi.org/10.3390/catal10080927.
Der volle Inhalt der QuelleGholami, Fatemeh, Zahra Gholami, Martin Tomas, Veronika Vavrunkova, Somayeh Mirzaei und Mohammadtaghi Vakili. „Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst“. Catalysts 10, Nr. 11 (13.11.2020): 1322. http://dx.doi.org/10.3390/catal10111322.
Der volle Inhalt der QuelleWang, Yizhou, Zheng Wang, Qiuyue Zhang, Yanping Ma, Gregory A. Solan, Yang Sun und Wen-Hua Sun. „Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis“. Catalysts 14, Nr. 3 (21.03.2024): 213. http://dx.doi.org/10.3390/catal14030213.
Der volle Inhalt der QuelleLin, Y. T., und M. C. Lu. „Catalytic action of goethite in the oxidation of 2-chlorophenols with hydrogen peroxide“. Water Science and Technology 55, Nr. 12 (01.06.2007): 101–6. http://dx.doi.org/10.2166/wst.2007.386.
Der volle Inhalt der QuelleGowri Krishnan, Shamala, Fei Ling Pua, Kumaran Palanisamy und Sharifah Nabihah. „Preparation of Oil Palm EFB Derived Solid Acid Catalyst for Esterification Reaction: Effect of Calcination Temperature“. Key Engineering Materials 701 (Juli 2016): 117–21. http://dx.doi.org/10.4028/www.scientific.net/kem.701.117.
Der volle Inhalt der QuelleBoscá, Lisardo, und Antonio Castrillo. „Nitric oxide, vascular function and exercise“. Biochemist 34, Nr. 3 (01.06.2012): 28–32. http://dx.doi.org/10.1042/bio03403028.
Der volle Inhalt der QuelleHu, Sihai, Yaoguo Wu, Hairui Yao, Cong Lu und Chengjun Zhang. „Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite“. Water Science and Technology 73, Nr. 1 (15.09.2015): 153–60. http://dx.doi.org/10.2166/wst.2015.467.
Der volle Inhalt der QuelleDissertationen zum Thema "Catalyse de fer"
Rangheard, Claudine. „Oligomérisation de l'éthylène par les complexes du fer“. Lyon 1, 2008. http://www.theses.fr/2008LYO10332.
Der volle Inhalt der QuelleAt the end of the 90’s, iron catalysts based on nitrogen-containing ligands, such as diimines and bis(imino)pyridines have been described as catalysts precursors for olefins oligomerization/polymerization. Theses catalysts display a wide range of advantages, spanning from the ease of preparation and handling to the use of low-cost metals with negligible environmental impact. Another interesting feature of theses complexes is provided by the facile tuning of their oligomerization activity by simple modifications of the ligand architecture. In this study, we report bis(imino)pyridine Fe11 complexes reactivities, after activation by an aluminoxane, for the ethylene oligomerization/polymerization, as well as the design, synthesis and characterization of new ligands and the reactivity of their iron complexes toward ethylene. We report the synthesis of new iron complexes associated with new potentially tridentate nitrogen ligands based on 2,4-dipyridin-2-yl-2-methyl-1,2-dihydro-1,10-phenantroline scaffold. We show that these catalysts precursors, once oxidized and activated by MAO, are active and display interesting selectivity for ethylene oligomerization
Wei, Duo. „Iron, manganese and rhenium-catalyzed (de)hydrogenation and hydroelementation reactions“. Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S105.
Der volle Inhalt der QuelleThis research work is aimed at developing advanced eco-friendly methodologies in the area of iron, manganese and rhenium-catalyzed (de)hydrogenation and hydroelementation reactions. Initially, we reported the first examples of highly selective catalytic direct C-H borylation of styrene derivatives and terminal alkynes with pinacolborane using Fe(PMe3)4 and Fe(OTf)2/DABCO as catalyst systems, respectively. Afterwards, N-heterocyclic carbene (NHC) based iron complexes Fe(CO)4(IMes) and [CpFe(CO)2(IMes)][I] were efficiently employed in the catalytic reductive amination reactions with hydrosilanes to access a large variety of cyclic amines (pyrrolidines, piperidines and azepanes). Interestingly, with the commercially available Mn2(CO)10 or Re2(CO)10 as catalyst and Et3SiH as an inexpensive hydrosilane source, carboxylic esters, acids and amides can be chemospecifically reduced to the corresponding acetals, alcohols and amines. Besides hydrosilylation, we also explored the application of a series of well-defined manganese pre-catalysts featuring readily available bidendate pyridinyl-phosphine and 2-picolylamine ligands in hydrogenation reactions of aldehydes, ketones and aldimines. In line with our interest in developing group 7 metals based catalysts, we have also demonstrated that a series of amino-bisphosphino ligands coordinated rhenium catalysts can efficiently promote the hydrogenation of carbonyl derivatives, the mono N-methylation of anilines with methanol and the dehydrogenative synthesis of substituted quinolines. Lastly we also developed the Mn-catalysed ligand- and additive-free aerobic oxidation of amines to prepare aldimines, N-heteroaromatics and benzoimidazole derivatives
Calmus, Laurent. „Catalyse au fer : synthèse de 2H-chromènes, synthèse de métachromines“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066397.
Der volle Inhalt der QuelleThe development of new synthetic methods, which could be used in the synthesis of biologically active compounds using inexpensive reactants and environmentally friendly conditions, is a major challenge in modern chemistry. 2H-Chromenes are present in a large number of biologically active compounds and especially in metachromins. Metachromins are natural marine meroterpenoids that present interesting biological activities. With these objectives in mind, our investigations were focused on the development of a synthetic method to access highly functionalised 2H-chromenes from readily accessible phenolic allylic alcohols, catalysed by iron(III) complexes as well as applications to the synthesis of various natural products. At the beginning, this method was applied to mono-, di-, tri- and tetra-substituted phenolic allylic alcohols to efficiently access the corresponding 2H-chromenes. This method tolerated a large number of functionalities and it was possible to modulate the reactivity of the substrates by substituting the aromatic ring and/or the allylic double bond. This method was applied as a key step in the first total synthesis of tephrowatsin B, a natural 2H-chromene isolated from an equatorial plant having insecticidal activities. On the other hand, the first total synthesis of metachromin J and T was investigated. Our method was used as a key step to access their 2H-chromene fragment, a common precursor of these molecules. The total synthesis of metachromin C was also studied
Guérin, Nicolas. „Fonctionnalisation du chrysotile avec du fer pour fins de catalyse“. Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25608/25608.pdf.
Der volle Inhalt der QuelleTrehoux, Alexandre. „Synthèse de complexes binucléaires de fer pour activation réductrice du dioxygène : vers de nouveaux catalyseurs d'oxydation bio-inspirés“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS052/document.
Der volle Inhalt der QuelleThis work describes the synthesis and the study of the reactivity of diiron complexes, developed in order to mimic the catalytic activity of diiron enzymes such as the soluble methane monooxygenase. We synthesized and characterized several diiron(III) complexes, bearing different types of groups (electron-donating, electron-withdrawing, hydrogen bond donating) in their second coordination sphere, in a symmetrical or non-symmetrical way. We studied the influence of the second coordination sphere of these different complexes over the different intermediates (particularly the µ-peroxo-FeIIIFeIII intermediate) formed by exposing them to hydrogen peroxide. We also studied the ability of these complexes to catalyze the oxidation of various substrates (sulfurs, alkenes, alkanes) by hydrogen peroxide, in absence or in presence of water in the reaction mixture. An interesting modification of chemoselectivity was observed in the case of oxidation of cyclooctene by hydrogen peroxyde, catalyzed by a non-symmetrical diiron complex, in presence of water in the reaction mixture. Several mechanistic studies were performed in order to investigate on the origin of the phenomenons we observed during oxidation catalysis studies
Ahr, Mathieu. „Réactions d'homocouplage de composés organomagnésiens aromatiques en présence de sels de fer“. Cergy-Pontoise, 2004. http://www.theses.fr/2004CERG0207.
Der volle Inhalt der QuelleA new homocoupling reaction of aryl Grignard reagents was developed. It takes place in the presence of iron salts and a organic halide which is used as an oxidant. A mechanism was proposed and discussed. Using 1,2-dihalogenoethanes as oxidant reagents, the homocoupling reaction of para-, meta- and ortho- subtitued by various functionalysed aryl Grignard reagents leads the corresponding biphenyls in good yields. 3,3'-bipyridine and 2,2'-difluoro-3,3'-dicarbethoxy-4,4'-bipyridine were also prepared. This reaction was used to perform intramolecular coupling reactions to create rings of 5, 6 and 8 atoms. At last, the total synthesis of N-methylcrinasiadine was completed using the intramolecular coupling reaction as the key step
Lepori, Clément. „Complexes de fer(II) et de cobalt(II) de basse coordinance : synthèses, caractérisations et applications en réaction d’hydroamination des alcènes“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS509.
Der volle Inhalt der QuelleThe nitrogenous units are present in many molecules of pharmaceutical interest. The traditional synthesis methods of these units range, for example, from the nucleophilic substitution of amines on alkyl halides to reductive amination of the carbonyl compounds. These methods, although effective, nevertheless require stoichiometric amounts of reagents to be applied and often generate large amounts of waste. One of the challenges of modern organic chemistry is to develop new methods of synthesizing these more economical and environmentally friendly patterns by producing the lowest waste rate possible. The direct addition of an amine to an unactivated carbon-carbon double bond known as the alkene hydroamination reaction is a very promising approach for the development of an alternative synthesis methodology for these compounds. Indeed, in this reaction, all the atoms of the starting substrate are transferred to the product thus considerably reducing the waste produced. In addition, the amines and olefins employed are relatively inexpensive, abundant and varied reagents. Nevertheless, this simple transformation generally requires the use of a catalyst. In the literature, the hydroamination reaction of alkenes has been studied using alkali metal, alkaline earth, rare earth and transition metal complexes as catalysts. At the beginning of this project there were no examples of the hydroamination reaction of alkenes involving unprotected primary amines catalysed by iron or cobalt complexes. In this context, our team was interested in the reactivity of iron (II) and cobalt (II) complexes of low valence stabilized by β-diketiminate ligands. These complexes have proved to be excellent catalysts for promoting the hydroamination reaction of unprotected primary amines bound to non-activated alkenes.In a first step, the syntheses of the iron (II) and cobalt (II) complexes stabilized by β-diketiminate ligands as well as their applications in cyclohydroamination reaction of the unprotected primary amines will be presented. In addition, advanced mechanistic studies will clarify the mechanism of the reaction, which is proposed to go through a key elementary 1..2 migratory insertion leading to the formation of a carbon-nitrogen bond.In a second step, the influence of the electron and steric properties of the ligands on the reactivity in the hydroamination reaction of the alkenes of the iron (II) alkyl complexes will be studied. We will focus particularly on complexes stabilized by asymmetric β-diketiminate ligands or iminoanilides. The crystallographic data of the solid state complexes will then make it possible to rationalize the variations of reactivities of these various complexes.Finally, the iron (II) and cobalt (II) complexes synthesized above will be exploited to develop new reactivities in oxidation reactions, oxidative amination or the creation of a nitrogen-silicon bond by a dehydrogenating coupling
Jollet, Véronique. „Complexes de fer bio inspirés pour la catalyse d'oxydation : systèmes homogènes et supportés“. Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00915279.
Der volle Inhalt der QuelleNicolas, Irène. „Cyclopropanation asymétrique catalysée par les métalloporphyrines (fer et ruthénium)“. Rennes 1, 2009. http://www.theses.fr/2009REN1S129.
Der volle Inhalt der QuelleDe nos jours le développement durable est devenu une des principales préoccupations des chimistes. Toutefois, les réactions catalytiques énantiosélectives utilisant des complexes de métaux de transition dans des solvants aqueux restent limitées. Pourtant nous avons mis en évidence que des complexes ruthénium-carbène sur des porphyrines pouvaient être stables en présence de solvants protiques. Nous nous sommes donc intéressés à la possibilité d’utiliser ces complexes mais également de développer de nouveaux catalyseurs chiraux hydrosolubles pour des réactions de cyclopropanations. Nos résultats ont montré que les porphyrines de ruthénium et de fer sont des catalyseurs efficaces pour la cyclopropanation asymétrique dans l'eau conduisant même, dans certains cas, à de meilleurs excès énantiomériques. En parallèle, et afin d'étendre les domaines d’applications de ces métalloporphyrines (Fe, Ru) comme catalyseurs, nous nous sommes intéressés à la synthèse de cyclopropyles cétones. Nous avons démontré lors de notre étude que l'addition asymétrique de la diazocétone sur des dérivés du styrène donne des excès énantiomériques allant jusqu'à 86% offrant pour la première fois un accès direct aux cyclopropyles cétones optiquement actives
Thibon, Aurore. „Complexes de fer non-hémiques, modèles de catalyseurs d’oxydation biologiques. Synthèses et caractérisations de complexes fer oxo et fer hydroperoxo. Utilisation en catalyse d’hydroxylation d’hydrocarbures aromatiques“. Paris 11, 2007. http://www.theses.fr/2007PA112152.
Der volle Inhalt der QuelleThe aim of this work is the functional modeling of iron monooxygenases. Among these biological systems, some are able to hydroxylate aromatic hydrocarbons. New Fe(II) complexes bearing hexadentate amine pyridine ligands or a pentadentate macrocyclic ligand with a pendant pyridine have been synthesized and characterized. The reaction of these Fe(II) precursors in presence of oxidants or oxidizing agents (peroxides, mCPBA, dioxygen) has been studied in different solvents at different temperatures. High valent Fe(IV)(O) intermediate and peroxo complexes (Fe(III)OOH and Fe(III)(O2)) have been obtained and identified. It has also been shown that these Fe(II) precursors are efficient catalyst for the hydroxylation of aromatic hydrocarbons by H2O2. In some instance, the presence of a reducing agent as a cofactor improves the yields in oxidation products. The obtention of [(L52)Fe(III)OOH]2+ as a microcrystalline powder has allowed to perform a mechanistic study of the hydroxylation of aromatics
Bücher zum Thema "Catalyse de fer"
National Symposium on Catalysis (8th 1987 Sindri, India). Challenges in catalysis science and technology: Proceedings of the 8th National Symposium on Catalysis held at Sindri during Feb. 12-14, 1987 under the joint auspices of Projects and Development India Limited and Catalysis Society of India. Sindri: Projects & Development India, 1987.
Den vollen Inhalt der Quelle findenNational Symposium on Catalysis (8th 1987 Sindri, India). Challenges in catalysis science and technology: Proceedings of the 8th National Symposium on Catalysis held at Sindri during Feb. 12-14, 19 87, under the joint auspices of Projects and Development India Limited and Catalysis Society of India. Sindri: Projects & Development India Ltd., 1987.
Den vollen Inhalt der Quelle findenMeunier, Florent. Réactions d'oxydation catalysées par des complexes de ruthénium et de fer. Grenoble: A.N.R.T. Université Pierre Mendès France Grenoble 2, 1986.
Den vollen Inhalt der Quelle findenPatricia, Peppin, McCreary Bruce D, Stanton Barbara, Queen's University (Kingston, Ont.). Developmental Consulting Program. und Queen's University (Kingston, Ont.). Division of Developmental Disabilities., Hrsg. Catalysts for university education in developmental disabilities. [Kingston, Ont.]: Developmental Consulting Program, Queen's University, 2001.
Den vollen Inhalt der Quelle findenNational Institutes of Health (U.S.). NCRR: A catalyst for discovery : a plan for the National Center for Research Resources. Bethesda, Md: NCRR, National Institutes of Health, 1994.
Den vollen Inhalt der Quelle findenCenter, International Fertilizer Development, und CATALIST (Project), Hrsg. Proposition pour l'amelioration des recommandations pour la gestion integree de la fertilite des sols (GIFS) sur la base des resultats des tests participatifs et des demonstrations de fertilisation du projet CATALIST. Muscle Shoals, Ala: IDFC, 2012.
Den vollen Inhalt der Quelle findenFerando, Christina. Exhibiting Antonio Canova. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2023. http://dx.doi.org/10.5117/9789463724098.
Der volle Inhalt der QuelleDavis, Burtron H. Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenDavis, Burtron H. Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenDavis, Burtron H. Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Catalyse de fer"
Duan, Lunbo, und Lin Li. „Oxygen Carrier Aided Gasification (OCAG)“. In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 79–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_5.
Der volle Inhalt der QuelleTerpstra, Marten. „Various Compositions Mainly Used as Catalysts or Catalyst Components“. In Materials for Refractories and Ceramics, 44–55. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4325-4_8.
Der volle Inhalt der QuelleKnözinger, H. „Metal Clusters and Particles as Catalyst Precursors and Catalysts“. In Cluster Models for Surface and Bulk Phenomena, 131–49. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6021-6_12.
Der volle Inhalt der QuelleBobrov, N. N., und V. N. Parmon. „Rapid Catalyst Testing in The Boreskov Institute of Catalysis“. In Principles and Methods for Accelerated Catalyst Design and Testing, 197–215. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0554-8_10.
Der volle Inhalt der QuelleZhang, Huanjun, Guohua Chen und Detlef W. Bahnemann. „Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts“. In Electrochemistry for the Environment, 371–442. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68318-8_16.
Der volle Inhalt der QuelleArvidsson, Niklas. „Overall conclusions this far“. In People as Care Catalysts, 127–29. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119207818.ch8.
Der volle Inhalt der QuelleHermanns, Ellen, Jens Hasenjäger und Birgit Drießen-Hölscher. „PEG-Modified Ligands for Catalysis and Catalyst Recycling in Thermoregulated Systems“. In Regulated Systems for Multiphase Catalysis, 53–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/3418_2006_061.
Der volle Inhalt der QuelleBerman, Carol W. „Fear: The Catalyst That Breaks Through Denial“. In Surviving Dementia, 7–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35102-5_2.
Der volle Inhalt der QuelleSchmiermund, Torsten. „Catalysis“. In The Chemistry Knowledge for Firefighters, 437–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64423-2_36.
Der volle Inhalt der QuelleFigueiredo, Jośe Lúís, und Manuel Fernando R. Pereira. „Carbon as Catalyst“. In Carbon Materials for Catalysis, 177–217. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470403709.ch6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Catalyse de fer"
Kang, Inyong, und Joongmyeon Bae. „Study on Autothermal Reforming of Diesel“. In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74063.
Der volle Inhalt der QuelleLobato, J., P. Can˜izares, M. A. Rodrigo, J. J. Linares und B. Sa´nchez-Rivera. „Testing Different Catalysts for a Vapor-Fed PBI-Based Direct Ethanol Fuel Cell“. In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85055.
Der volle Inhalt der QuelleWu, Quanwen, Wenhua Luo, Daqiao Meng, Jinchun Bao und Jingwen Ba. „High Efficient Detritiation Catalysts for Fusion Safety“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81269.
Der volle Inhalt der QuellePrikhodko, Vitaly Y., Josh A. Pihl, Samuel A. Lewis und James E. Parks. „Effect of Hydrocarbon Emissions From PCCI-Type Combustion on the Performance of Selective Catalytic Reduction Catalysts“. In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60129.
Der volle Inhalt der QuelleJayasuriya, Jeevan, Arturo Manrique, Reza Fakhrai, Jan Fredriksson und Torsten Fransson. „Experimental Investigations of Catalytic Combustion for High-Pressure Gas Turbine Applications“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90986.
Der volle Inhalt der QuelleDjimasbe, Richard, Mikhail A. Varfolomeev, Eduard A. Galiullin, Ameen A. Al-Muntaser, Bulat I. Gareev, Rail I. Kadyrov, Muneer A. Suwaid, Rustam R. Davletshin und Konstantin Yu Prochukhan. „Development and Assisted Injection of Sub- And Supercritical Water by the Oil-Soluble Catalysts for the Intensification of Upgrading Process of the Bazhenov Oil Shale and Production of Synthetic Oil“. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215485-ms.
Der volle Inhalt der QuelleSamsa, Žiga, Darja Pečar und Andreja Goršek. „Catalyzed Degradation of Polyethylene Terephthalate“. In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2023. http://dx.doi.org/10.18690/um.fkkt.1.2023.5.
Der volle Inhalt der QuelleHarth, Florian M., Brigita Hočevar, Blaž Likozar und Miha Grilc. „A Novel Process to Produce Adipic Acid by Catalytic Dehydroxylation of Biomass-derived Mucic Acid“. In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2022. http://dx.doi.org/10.18690/um.fkkt.3.2022.1.
Der volle Inhalt der QuelleV, Praveena, Rajarajeswari R und Deborah Stephen. „Enhancing the Performance of DOC and SCR After-Treatment Devices Using Statistical Techniques and Heating Strategies“. In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0128.
Der volle Inhalt der QuelleZhu, Yimin, Ionel Stefan, Baixin Qian, Jay Goldman, Jurgen Hofler und Jason Hartlove. „Inorganic-Nano-Fiber-Based Catalyst for Hydrogen Fuel Cells With Superior Performance“. In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85130.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Catalyse de fer"
Olsen, Daniel, Bryan Hackleman und Rodrigo Bauza Tellechaea. PR-179-16207-R01 Oxidation Catalyst Degradation on a 2-Stroke Lean-Burn NG Engine - Washing. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2019. http://dx.doi.org/10.55274/r0011586.
Der volle Inhalt der QuelleStevens und Olsen. PR-179-12214-R01 CO Sensor Experimental Evaluation for Catalyst Health Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2014. http://dx.doi.org/10.55274/r0010827.
Der volle Inhalt der QuelleBadrinarayanan und Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010772.
Der volle Inhalt der QuelleOlsen und Neuner. PR-179-12207-R01 Performance Measurements of Oxidation Catalyst on an Exhaust Slipstream. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2013. http://dx.doi.org/10.55274/r0010800.
Der volle Inhalt der QuelleDefoort, Willson und Olsen. L51849 Performance Evaluation of Exhaust Catalysts During the Initial Aging on Large Industrial Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2001. http://dx.doi.org/10.55274/r0011213.
Der volle Inhalt der QuelleSwanson, Dr Larry, und Christopher Samuelson. PR-362-06208-R01 Evaluation of Byproduct Emissions from Gas Turbine SCR Catalyst. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2009. http://dx.doi.org/10.55274/r0010978.
Der volle Inhalt der QuelleBauza, Rodrigo, und Daniel Olsen. PR-179-20200-R01 Improved Catalyst Regeneration Process to Increase Poison Removal. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2021. http://dx.doi.org/10.55274/r0012106.
Der volle Inhalt der QuelleBaumgardner, Davis und Olsen. PR-179-13205-R01 Field Evaluation of Oxidation Catalyst Degradation - 2-Stroke Lean-Burn NG Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2015. http://dx.doi.org/10.55274/r0010036.
Der volle Inhalt der QuelleDatye, A. K., M. D. Shroff, Y. Jin, R. P. Brooks, J. A. Wilder, M. S. Harrington, A. G. Sault und N. B. Jackson. Nanoscale attrition during activation of precipitated iron Fischer- Tropsch catalysts: Implications for catalyst design. Office of Scientific and Technical Information (OSTI), Juni 1996. http://dx.doi.org/10.2172/237416.
Der volle Inhalt der QuelleMAVRIKAKIS, MANOS DUMESIC, JAMES A. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity. Office of Scientific and Technical Information (OSTI), Mai 2007. http://dx.doi.org/10.2172/902903.
Der volle Inhalt der Quelle