Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cascade of turbulent cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cascade of turbulent cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cascade of turbulent cells"
Medina, Socorro, Ellen Sukovich und Robert A. Houze. „Vertical Structures of Precipitation in Cyclones Crossing the Oregon Cascades“. Monthly Weather Review 135, Nr. 10 (01.10.2007): 3565–86. http://dx.doi.org/10.1175/mwr3470.1.
Der volle Inhalt der QuelleBudiarso, Ahmad Indra Siswantara, Steven Darmawan und Harto Tanujaya. „Inverse-Turbulent Prandtl Number Effects on Reynolds Numbers of RNG k-ε Turbulence Model on Cylindrical-Curved Pipe“. Applied Mechanics and Materials 758 (April 2015): 35–44. http://dx.doi.org/10.4028/www.scientific.net/amm.758.35.
Der volle Inhalt der QuelleHouze, Robert A., und Socorro Medina. „Turbulence as a Mechanism for Orographic Precipitation Enhancement“. Journal of the Atmospheric Sciences 62, Nr. 10 (01.10.2005): 3599–623. http://dx.doi.org/10.1175/jas3555.1.
Der volle Inhalt der QuellePetukhov, E. P., Y. B. Galerkin und A. F. Rekstin. „A Study of Testing Procedures of Vaned Diffusers of a Centrifugal Compressor Stage in a Virtual Wind Tunnel“. Proceedings of Higher Educational Institutions. Маchine Building, Nr. 8 (713) (August 2019): 51–64. http://dx.doi.org/10.18698/0536-1044-2019-8-51-64.
Der volle Inhalt der QuelleHwang, C. J., und J. L. Liu. „Inviscid and Viscous Solutions for Airfoil/Cascade Flows Using a Locally Implicit Algorithm on Adaptive Meshes“. Journal of Turbomachinery 113, Nr. 4 (01.10.1991): 553–60. http://dx.doi.org/10.1115/1.2929114.
Der volle Inhalt der QuelleYang, Yan-Tao, und Jie-Zhi Wu. „Channel turbulence with spanwise rotation studied using helical wave decomposition“. Journal of Fluid Mechanics 692 (16.12.2011): 137–52. http://dx.doi.org/10.1017/jfm.2011.500.
Der volle Inhalt der QuelleDay, Steven W., und James C. McDaniel. „PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow“. Journal of Biomechanical Engineering 127, Nr. 2 (18.11.2004): 244–53. http://dx.doi.org/10.1115/1.1865189.
Der volle Inhalt der QuelleAbhari, R. S., und M. Giles. „A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping“. Journal of Turbomachinery 119, Nr. 1 (01.01.1997): 77–84. http://dx.doi.org/10.1115/1.2841013.
Der volle Inhalt der QuelleDüben, Peter D., und Peter Korn. „Atmosphere and Ocean Modeling on Grids of Variable Resolution—A 2D Case Study“. Monthly Weather Review 142, Nr. 5 (30.04.2014): 1997–2017. http://dx.doi.org/10.1175/mwr-d-13-00217.1.
Der volle Inhalt der QuelleHe, W., R. S. Gioria, J. M. Pérez und V. Theofilis. „Linear instability of low Reynolds number massively separated flow around three NACA airfoils“. Journal of Fluid Mechanics 811 (15.12.2016): 701–41. http://dx.doi.org/10.1017/jfm.2016.778.
Der volle Inhalt der QuelleDissertationen zum Thema "Cascade of turbulent cells"
Kovaľová, Alžbeta. „Kvantifikace turbulence pomocí ekvivalentního teplotního gradientu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442412.
Der volle Inhalt der QuelleAlves, Portela Felipe. „Turbulence cascade in an inhomogeneous turbulent flow“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/63233.
Der volle Inhalt der QuelleCleve, Jochen. „Data-driven theoretical modelling of the turbulent energy cascade“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1103125565484-63361.
Der volle Inhalt der QuelleModelling the turbulent energy cascade gives valuable insight into the dynamics of a turbulent flow. In this work, random multiplicative cascade processes are studied and compared with dissipation time series obtained from various experiments. The emphasis of this comparison is laid on the two-point correlation function because the unavoidable surrogacy of the dissipation field, i.e.the substitution of the multi-component expression by a single component of the velocity signal, corrupts the scaling behaviour of other observables such as integral moments. Finite-size expressions for the two-point correlation function are derived, which make it possible to fit data obtained at moderate or low Reynolds numbers and extract accurate values of scaling exponents. A comprehensive data analysis attempts to determine the free parameters of the cascade generator. The statistics are too limited to claim more than that the cascade generator will be close to having a log-normal distribution. The most basic scaling exponent of the dissipation field is called intermittency exponent and can be used to characterise the data. The investigated data fall into two groups. One set of data obtained from measurements with air show an increasing intermittency exponent with an increasing Reynolds number and saturate for high Reynolds numbers to a value of 0.2. The other set, obtained in a helium jet is best characterised with a constant intermittency exponent of 0.1. The differences are not fully understood. To investigate this issue further, a new construction is suggested, that translates the Kramers-Moyal coefficients of the velocity field into a dissipation field in order to calculate the intermittency exponent from different perspective. Finally, a dynamical generalisation of the cascade process, introduced recently, is tested. The dynamical model makes predictions for point correlation functions. The analytical expressions for three-point correlation functions are compared with their counterparts obtained from experimental data and show remarkable agreement
Kishi, Tatsuro. „Scaling laws for turbulent relative dispersion in two-dimensional energy inverse-cascade turbulence“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263445.
Der volle Inhalt der QuelleMicklow, Gerald J. „Turbomachinery cascade and wake calculation for two-dimensional compressible laminar and turbulent flow“. Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54244.
Der volle Inhalt der QuellePh. D.
Wakefield, Bryce Edwin. „Hotwire measurements of the turbulent flow into a cascade of controlled-diffusion compressor blades“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277297.
Der volle Inhalt der QuelleTang, Genglin. „Measurements of the Tip-gap Turbulent Flow Structure in a Low-speed Compressor Cascade“. Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11178.
Der volle Inhalt der QuellePh. D.
Togni, Riccardo. „A numerical study of turbulent Rayleigh-Bénard convection“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6280/.
Der volle Inhalt der QuelleLapeyre, Guillaume. „Topologie du mélange dans un fluide turbulent géophysique“. Paris 6, 2000. https://hal.archives-ouvertes.fr/tel-01475960.
Der volle Inhalt der QuelleKahalerras, Henda. „Etude expérimentale de la profondeur de la cascade de l'intermittence“. Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10119.
Der volle Inhalt der QuelleBücher zum Thema "Cascade of turbulent cells"
Le, Thuyanh. Regulation of the MAP kinase cascade by ACTH in Y1 adrenal cells. Ottawa: National Library of Canada, 1999.
Den vollen Inhalt der Quelle findenRyan, Martyn J. The effect of hydrodynamic stress on plant cell cultures in turbulent jet flows. Dublin: University College Dublin, 1997.
Den vollen Inhalt der Quelle findenA, Shibukawa, Yamaguchi M und United States. National Aeronautics and Space Administration., Hrsg. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenA, Shibukawa, Yamaguchi M und United States. National Aeronautics and Space Administration., Hrsg. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenA, Shibukawa, Yamaguchi M und United States. National Aeronautics and Space Administration., Hrsg. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenBlakeslee, E. Tunnel Diode Interconnect Junctions for Cascade Solar Cells. Amer Solar Energy Society, 1985.
Den vollen Inhalt der Quelle findenKaragiannis, George S., und Panagiota S. Filippou, Hrsg. Revisiting the Metastatic Cascade: Putting Myeloid Cells Into Context. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-467-2.
Der volle Inhalt der QuelleK, Swartz Clifford, Hart Russell E und United States. National Aeronautics and Space Administration., Hrsg. Radiation performance of AlGaAs and InGaAs concentrator cells and expected performance of cascade structure. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenModelling of multijunction cascade photovoltaics for space applications. [Cleveland, Ohio?: NASA Lewis Research Center, 1987.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, Hrsg. Modelling of multijunction cascade photovoltaics for space applications. [Cleveland, Ohio?: NASA Lewis Research Center, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cascade of turbulent cells"
Jiménez, Javier, José I. Cardesa und Adrián Lozano-Durán. „The Turbulence Cascade in Physical Space“. In Turbulent Cascades II, 45–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_6.
Der volle Inhalt der QuelleFuchs, André, Nico Reinke, Daniel Nickelsen und Joachim Peinke. „A Rigorous Entropy Law for the Turbulent Cascade“. In Turbulent Cascades II, 17–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_3.
Der volle Inhalt der QuelleSivashinsky, G. I. „Cascade Model for Turbulent Flame Propagation“. In Dissipative Structures in Transport Processes and Combustion, 30–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84230-6_4.
Der volle Inhalt der QuelleBrandenburg, Axel. „The Inverse Cascade in Turbulent Dynamos“. In Dynamo and Dynamics, a Mathematical Challenge, 125–32. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0788-7_15.
Der volle Inhalt der QuelleGoto, Susumu. „Turbulent energy cascade caused by vortex stretching“. In Springer Proceedings in Physics, 269–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03085-7_65.
Der volle Inhalt der QuelleMelander, M. V., und F. Hussain. „Reconnection of Two Antiparallel Vortex Tubes: A New Cascade Mechanism“. In Turbulent Shear Flows 7, 9–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_2.
Der volle Inhalt der QuelleCampagne, Antoine, Roumaissa Hassaini, Ivan Redor, Joel Sommeria und Nicolas Mordant. „The Energy Cascade of Surface Wave Turbulence: Toward Identifying the Active Wave Coupling“. In Turbulent Cascades II, 239–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_25.
Der volle Inhalt der QuelleGogichaishvili, D., G. Mamatsashvili, G. Chagelishvili und W. Horton. „Nonlinear Transverse Cascade—A Key Factor of Sustenance of Subcritical Turbulence in Shear Flows“. In Turbulent Cascades II, 103–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_12.
Der volle Inhalt der QuelleCantarella, Laura, Fabrizia Pasquarelli, Agata Spera, Ludmila Martínková und Maria Cantarella. „Key-Study on the Kinetic Aspects of theIn SituNHase/AMase Cascade System ofM. imperialeResting Cells for Nitrile Bioconversion“. In Cascade Biocatalysis, 283–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.ch13.
Der volle Inhalt der QuelleJiménez, Javier. „Self-Similarity and Coherence in the Turbulent Cascade“. In IUTAM Symposium on Geometry and Statistics of Turbulence, 57–66. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9638-1_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cascade of turbulent cells"
Tınaztepe, H. Tug˘rul, Ahmet S¸ U¨c¸er und I˙ Sinan Akamandor. „Performance Evaluation of an Internal Flow Navier-Stokes Solver for Compressible Viscous Flow Simulations“. In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30681.
Der volle Inhalt der QuelleMin, Byung-Young, Jongwook Joo, Jomar Mendoza, Jin Lee, Guoping Xia und Gorazd Medic. „Large-Eddy Simulation of Corner Separation in a Compressor Cascade“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-77144.
Der volle Inhalt der QuelleBertolini, Ettore, Paul Pieringer und Wolfgang Sanz. „Large Eddy Simulation of a Transonic Linear Cascade With Synthetic Inlet Turbulence“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14461.
Der volle Inhalt der QuelleMedic, Gorazd, und Om Sharma. „Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68878.
Der volle Inhalt der QuellePasinato, Hugo D., Zan Liu, Ramendra P. Roy, W. Jeffrey Howe und Kyle D. Squires. „Prediction and Measurement of the Flow and Heat Transfer Along the Endwall and Within an Inlet Vane Passage“. In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30189.
Der volle Inhalt der QuelleHwang, C. J., und J. L. Liu. „Inviscid and Viscous Solutions for Airfoil/Cascade Flows Using a Locally Implicit Algorithm on Adaptive Meshes“. In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-262.
Der volle Inhalt der QuelleMovva, Jagadeesh, Dimitrios Papadogiannis und Stéphane Hiernaux. „Assessment of Wall Modelling for Large Eddy Simulations of Turbomachinery“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75773.
Der volle Inhalt der QuelleBertolini, Ettore, Paul Pieringer und Wolfgang Sanz. „Prediction of Separated Flow Transition Using LES and Transitional RANS Model“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90214.
Der volle Inhalt der QuelleTieghi, Lorenzo, Alessandro Corsini, Giovanni Delibra und Gino Angelini. „Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91238.
Der volle Inhalt der QuelleAbharl, Reza S., und Michael Giles. „A Navier Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping“. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-182.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cascade of turbulent cells"
Yang, Rui Q., Michael B. Santos und Matthew B. Johnson. Interband Cascade Photovoltaic Cells. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1157586.
Der volle Inhalt der QuelleEaton, John K., Christopher J. Elkins und Sayuri D. Yapa. Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade. Fort Belvoir, VA: Defense Technical Information Center, Januar 2015. http://dx.doi.org/10.21236/ada625654.
Der volle Inhalt der QuelleBirkmire, R. W., B. E. McCandless und J. E. Phillips. Two-terminal CuInSe/sub 2/-based cascade cells: Annual subcontract report, 16 January 1987--15 January 1988. Office of Scientific and Technical Information (OSTI), Mai 1989. http://dx.doi.org/10.2172/6108038.
Der volle Inhalt der QuelleCohick, Wendie S. Phosphorylation of Intracellular IGF Binding Protein-3 by the IGF Signaling Cascade is Essential for its Growth-Enhancing Effect in Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada418987.
Der volle Inhalt der QuelleCohick, Wendie S. Phosphorylation of Intracellular IGF Binding Protein-3 by the IGF Signaling Cascade is Essential for Its Growth-Enhancing Effect in Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada409764.
Der volle Inhalt der Quelle