Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cartilage cells – Transplantation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cartilage cells – Transplantation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cartilage cells – Transplantation"
Messner, K. „Articular cartilage transplantation using precultivated cells“. Der Orthopäde 28, Nr. 1 (Januar 1999): 61–67. http://dx.doi.org/10.1007/pl00003551.
Der volle Inhalt der QuelleEnomura, Masahiro, Soichiro Murata, Yuri Terado, Maiko Tanaka, Shinji Kobayashi, Takayoshi Oba, Shintaro Kagimoto et al. „Development of a Method for Scaffold-Free Elastic Cartilage Creation“. International Journal of Molecular Sciences 21, Nr. 22 (11.11.2020): 8496. http://dx.doi.org/10.3390/ijms21228496.
Der volle Inhalt der QuelleLindahl, Anders. „From gristle to chondrocyte transplantation: treatment of cartilage injuries“. Philosophical Transactions of the Royal Society B: Biological Sciences 370, Nr. 1680 (19.10.2015): 20140369. http://dx.doi.org/10.1098/rstb.2014.0369.
Der volle Inhalt der QuelleLe, Hanxiang, Weiguo Xu, Xiuli Zhuang, Fei Chang, Yinan Wang und Jianxun Ding. „Mesenchymal stem cells for cartilage regeneration“. Journal of Tissue Engineering 11 (Januar 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943839.
Der volle Inhalt der QuellePlánka, Ladislav, David Starý, Jana Hlučilová, Jiří Klíma, Josef Jančář, Leoš Křen, Jana Lorenzová et al. „Comparison of Preventive and Therapeutic Transplantations of Allogeneic Mesenchymal Stem Cells in Healing of the Distal Femoral Growth Plate Cartilage Defects in Miniature Pigs“. Acta Veterinaria Brno 78, Nr. 2 (2009): 293–302. http://dx.doi.org/10.2754/avb200978020293.
Der volle Inhalt der QuelleRim, Yeri Alice, Yoojun Nam und Ji Hyeon Ju. „Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration“. Cell Transplantation 28, Nr. 5 (25.09.2018): 529–37. http://dx.doi.org/10.1177/0963689718794864.
Der volle Inhalt der QuelleBae, Jung Yoon, Kazuaki Matsumura, Shigeyuki Wakitani, Amu Kawaguchi, Sadami Tsutsumi und Suong-Hyu Hyon. „Beneficial Storage Effects of Epigallocatechin-3-O-Gallate on the Articular Cartilage of Rabbit Osteochondral Allografts“. Cell Transplantation 18, Nr. 5-6 (Mai 2009): 505–12. http://dx.doi.org/10.1177/096368970901805-604.
Der volle Inhalt der QuelleMoskalewski, S., und J. Malejczyk. „Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation?“ Development 107, Nr. 3 (01.11.1989): 473–80. http://dx.doi.org/10.1242/dev.107.3.473.
Der volle Inhalt der QuelleCima, L. G., J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney und R. Langer. „Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates“. Journal of Biomechanical Engineering 113, Nr. 2 (01.05.1991): 143–51. http://dx.doi.org/10.1115/1.2891228.
Der volle Inhalt der QuelleLongo, Umile Giuseppe, Stefano Petrillo, Edoardo Franceschetti, Alessandra Berton, Nicola Maffulli und Vincenzo Denaro. „Stem Cells and Gene Therapy for Cartilage Repair“. Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/168385.
Der volle Inhalt der QuelleDissertationen zum Thema "Cartilage cells – Transplantation"
Jones, Christopher Wynne. „Laser scanning confocal arthroscopy in orthopaedics : examination of chondrial and connective tissues, quantification of chondrocyte morphology, investigation of matirx-induced autologous chondrocyte implantation and characterisation of osteoarthritis“. University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0061.
Der volle Inhalt der QuelleRakic, Rodolphe. „Nouvelles stratégies thérapeutiques des affections articulaires du cheval : évaluation du potentiel thérapeutique des chondrocytes autologues et des cellules souches de cordon ombilical (sang et gelée de Wharton) : vers l'industrialisation de cellules médicaments“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC406/document.
Der volle Inhalt der QuelleArticular cartilage disorders, such as focal defects and osteoarthritis, are the main causes of decreased performance or early retirement of sport- and racehorses. Thus, cartilage disorders represent a major veterinary issue in the equine industry, due to significant financial losses. Poor intrinsic cartilage repair properties and the absence of long- term therapy for cartilage defects lead to the development and use of new generation therapies such as autologous chondrocytes implantation. In this context, our study aimed to compare different cell types for the in vitro cartilage generation, in order to implant the biological substitute to treat cartilage defects in the horse. A therapeutic strategy initially developed in human medicine, the autologous chondrocytes transplantation, always represents a "gold standard" in cartilage tissue engineering. In the present study, after developing a new generation of cartilaginous substitute of high biological quality, composed of equine articular chondrocytes, technical and biological limits inherent to the cell type persist. Thus, we have used alternative cell types such as neonatal mesenchymal stem/stromal cells (MSCs) from umbilical cord, such as umbilical cord blood MSC (UCB-MSCs) and umbilical cord matrix or Wharton jelly MSCs (UCM- MSCs). These MSCs sources could represent a therapeutic advantage due to their non-invasive isolation, their high cell proliferation and their ability to differentiate into chondrocytes. Nevertheless, it is essential to define the best therapeutic candidate between these two MSCs sources, to obtain an optimal quality for the neocartilaginous substitute. Our data highlighted important differences in the chondrogenesis process of these two neonatal MSCs sources, allowing us to consider UCB-MSCs as the best therapeutic candidate for equine cartilage tissue engineering. This work allows a better understanding of the chondrocyte and MSCs biology. Moreover, this work leads the way to setting-up future clinical trials in the horse, in order to treat articular defects of this large animal model
Aulin, Cecilia. „Extracellular Matrix Based Materials for Tissue Engineering“. Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110631.
Der volle Inhalt der Quelle„Effect of scaffold-free bioengineered chondrocyte pellet in osteochondral defect in a rabbit model“. 2009. http://library.cuhk.edu.hk/record=b5893862.
Der volle Inhalt der QuelleThesis submitted in: Dec 2008.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 132-144).
Abstracts in English and Chinese.
ABSTRACT --- p.i
論文摘要 --- p.iii
PUBLICATIONS --- p.v
ACKNOWLEDGEMENT --- p.vi
LIST OF ABBREBIVIATIONS --- p.vii
INDEX FOR FIGURES --- p.x
INDEX FOR TABLES --- p.xiv
TABLE OF CONTENTS --- p.xv
Chapter CHAPTER ONE - --- INTRODUCTION
Chapter 1.1 --- "Joint function, structure and biochemistry"
Chapter 1.1.1 --- Function of joint --- p.1
Chapter 1.1.2 --- Types of cartilage --- p.1
Chapter 1.1.3 --- Composition and structure of articular cartilage --- p.2
Chapter 1.1.4 --- The subchondral bone --- p.3
Chapter 1.1.5 --- Maturation of articular cartilage and subchondral bone --- p.3
Chapter 1.2 --- Osteochondral defect
Chapter 1.2.1 --- Clinical problem --- p.6
Chapter 1.2.2 --- Spontaneous repair --- p.7
Chapter 1.2.3 --- Current treatment strategies --- p.7
Chapter 1.2.4 --- Limitations of current treatment strategies --- p.8
Chapter 1.2.5 --- Treatments under development --- p.11
Chapter 1.2.6 --- Potential and limitations in cell therapies --- p.14
Chapter 1.3 --- The 3-D scaffold-free cartilage
Chapter 1.3.1 --- Fabrication of scaffold-free cartilage --- p.16
Chapter 1.3.2 --- Scaffold-free cartilage for chondral / osteochondral defect repair --- p.18
Chapter 1.3.3 --- Scaffold-free bioengineered chondrocyte pellet from our group --- p.20
Chapter 1.3.4 --- BCP as a possible treatment for OCD --- p.21
Chapter 1.4 --- The objectives of the study --- p.22
Chapter 1.5 --- The study plan
Chapter 1.5.1 --- Design of the study --- p.23
Chapter 1.5.2 --- Choice of animal model --- p.23
Chapter 1.5.3 --- Selection of evaluation time points --- p.24
Chapter 1.5.4 --- Choice and modification of histological scoring system --- p.24
Chapter CHAPTER TWO - --- METHODOLOGY
Chapter 2.1 --- Preparation of reagents and materials for tissue culture and histology --- p.26
Chapter 2.2 --- Creation of osteochondral defect model --- p.28
Chapter 2.3 --- Synthesis of scaffold-free cartilage using 3-D chondrocyte pellet culture
Chapter 2.3.1 --- Isolation of rabbit costal chondrocytes --- p.31
Chapter 2.3.2 --- Three-dimensional chondrocyte pellet culture --- p.31
Chapter 2.3.3 --- BrdU labeling for cell fate tracing --- p.32
Chapter 2.4 --- Further characterization of the 3-D scaffold-free chondrocyte pellet
Chapter 2.4.1 --- Gross appearance --- p.35
Chapter 2.4.2 --- Cell viability
Chapter 2.4.2.1 --- Alamar blue reduction assay --- p.35
Chapter 2.4.3 --- Preparation of samples for histology --- p.36
Chapter 2.4.4 --- General morphology and histomorphology
Chapter 2.4.4.1 --- H&E staining --- p.36
Chapter 2.4.5 --- Cartilage properties
Chapter 2.4.5.1 --- Safranin O /Fast Green staining --- p.37
Chapter 2.4.5.2 --- Immunohistochemistry of type II collagen --- p.37
Chapter 2.4.5.3 --- Immunohistochemistry of type I collagen --- p.38
Chapter 2.4.6 --- Angiogenic properties
Chapter 2.4.6.1 --- Immunohistochemistry of VEGF --- p.40
Chapter 2.4.7 --- Osteogenic properties
Chapter 2.4.7.1 --- ALP staining --- p.40
Chapter 2.5 --- Implantation of scaffold-free cartilage into osteochondral defect model
Chapter 2.5.1 --- Surgical procedures --- p.41
Chapter 2.5.2 --- Experimental groups --- p.42
Chapter 2.6 --- Assessment of osteochondral defect healing
Chapter 2.6.1 --- Macroscopic evaluation --- p.43
Chapter 2.6.2 --- Preparation of samples for histology --- p.43
Chapter 2.6.3 --- Histology for general morphology
Chapter 2.6.3.1 --- H&E staining --- p.45
Chapter 2.6.4 --- Histological scoring
Chapter 2.6.4.1 --- Modification of the scoring system --- p.45
Chapter 2.6.4.2 --- Procedures of scoring and validation --- p.45
Chapter 2.6.5 --- Cell proliferation
Chapter 2.6.5.1 --- Immunohistochemistry of PCNA --- p.49
Chapter 2.6.6 --- Cartilage regeneration
Chapter 2.6.6.1 --- Safranin O /Fast Green staining --- p.49
Chapter 2.6.6.2 --- Immunohistochemistry of type II collagen --- p.49
Chapter 2.6.6.3 --- Immunohistochemistry of type I collagen --- p.50
Chapter 2.6.6.4 --- Polarized light microscopy --- p.50
Chapter 2.6.7 --- Expression of angiogenic factor
Chapter 2.6.7.1 --- Immunohistochemistry of VEGF --- p.50
Chapter 2.6.8 --- Bone regeneration
Chapter 2.6.8.1 --- μCT analysis --- p.50
Chapter 2.6.9 --- Histomorphometric analysis of cartilage and bone regeneration --- p.53
Chapter 2.6.10 --- BrdU detection for cell fate tracing --- p.55
Chapter 2.6.11 --- Statistical analysis --- p.55
Chapter CHAPTER THREE - --- RESULTS
Chapter 3.1 --- Further characterization of the 3-D chondrocyte pellet culture
Chapter 3.1.1 --- Gross examination --- p.57
Chapter 3.1.2 --- Cell viability --- p.57
Chapter 3.1.3 --- Cartilage properties --- p.61
Chapter 3.1.4 --- Angiogenic properties --- p.63
Chapter 3.1.5 --- Osteogenic properties --- p.64
Chapter 3.2 --- Implantation of scaffold-free cartilage and assessment
Chapter 3.2.1 --- Gross examination --- p.65
Chapter 3.2.2 --- General morphology --- p.67
Chapter 3.2.3 --- Histological scores --- p.71
Chapter 3.2.4 --- Cell proliferation --- p.75
Chapter 3.2.5 --- Cartilage regeneration --- p.78
Chapter 3.2.6 --- Expression of angiogenic factor --- p.90
Chapter 3.2.7 --- Bone regeneration --- p.93
Chapter 3.2.8 --- Histomorphometric analysis on cartilage and bone regeneration --- p.96
Chapter 3.2.9 --- Cell fate tracing --- p.100
Chapter CHAPTER FOUR - --- DISCUSSION
Chapter 4.1 --- Summary of key findings
Chapter 4.1.1 --- Further characterization of BCP and determination of implantation time --- p.102
Chapter 4.1.2 --- Implantation of BCP in OCD --- p.102
Chapter 4.2 --- Spontaneous healing in osteochondral defect
Chapter 4.2.1 --- Findings from the current study --- p.104
Chapter 4.2.2 --- Comparison with other studies --- p.104
Chapter 4.2.3 --- Factors affecting spontaneous healing --- p.105
Chapter 4.3 --- Fabrication and further characterization of the 3-D chondrocyte pellet
Chapter 4.3.1 --- Comparison of different methods of producing scaffold-free cartilage construct --- p.106
Chapter 4.3.2 --- Cartilage phenotype of the BCP --- p.107
Chapter 4.3.3 --- Angiogenic and osteogenic potential of the BCP --- p.108
Chapter 4.3.4 --- Role of mechanical stimulation on tissue-engineered cartilage --- p.109
Chapter 4.4 --- Repair of osteochondral defect with allogeneic scaffold-free cartilage
Chapter 4.4.1 --- Advantages of the current scaffold-free chondrocyte pellet --- p.111
Chapter 4.4.2 --- Remodeling of BCP after implantation --- p.111
Chapter 4.4.3 --- Effect of BCP on cartilage repair --- p.112
Chapter 4.4.4 --- Effect of BCP on bone regeneration
Chapter 4.4.4.1 --- Findings in the present study --- p.113
Chapter 4.4.4.2 --- Possible reasons of slow bone repair --- p.114
Chapter 4.4.4.3 --- Effect of BCP on bone region peripheral to defect --- p.115
Chapter 4.4.5 --- Immunorejection-free properties of the BCP --- p.116
Chapter 4.4.6 --- Comparison with other animal studies using scaffold-free cartilage --- p.117
Chapter 4.4.7 --- Possibility of implanting a BCP cultured for shorter or longer period --- p.118
Chapter 4.4.8 --- Scaffold-free cartilage construct and construct with scaffold for OCD repair --- p.119
Chapter 4.4.9 --- Chondrocytes and stem cells for OCD repair --- p.120
Chapter 4.5 --- Limitations of the study
Chapter 4.5.1 --- Animal model --- p.122
Chapter 4.5.2 --- Histomorphometric analysis --- p.122
Chapter 4.5.3 --- Lack of quantitative data analysis --- p.122
Chapter 4.5.4 --- BrdU labeling of cells --- p.123
Chapter 4.5.5 --- Lack of biomechanical test --- p.123
Chapter 4.5.6 --- Small sample size --- p.123
Chapter CHAPTER FIVE - --- CONCLUSION --- p.124
Chapter CHAPTER SIX - --- FUTURE STUDIES
Chapter 6.1 --- Identification of factors affecting bone repair after OCD treatment --- p.125
Chapter 6.2 --- Modifications of BCP treatment --- p.125
Chapter 6.3 --- Alternative cell source --- p.126
Chapter 6.4 --- Alternative cell tracking methods --- p.126
Chapter 6.5 --- Inclusion of biomechanical test --- p.126
APPENDICES
Appendix 1. Conference paper 1 --- p.129
Appendix 2: Conference paper 2 --- p.130
Appendix 3: Animal experimentation ethics approval --- p.131
BIBLIOGRAPHY --- p.132
Lavoie, Jean-Francois. „Mesodermal Differentiation of Skin-derived Precursor cells“. Thesis, 2010. http://hdl.handle.net/1807/24807.
Der volle Inhalt der QuelleBücher zum Thema "Cartilage cells – Transplantation"
Khan, Wasim S. Stem cells and cartilage tissue engineering approaches to orthopaedic surgery. Hauppauge, N.Y: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenJūryūshi Ikagaku Sentā. Shinpojūmu "Saisei Iryō to Bunshi Imējingu". Dai 3-kai Jūryūshi Ikagaku Sentā Shinpojūmu Saisei Iryō to Bunshi Imējingu. Chiba-ken Chiba-shi: Hōshasen Igaku Sōgō Kenkyūjo, 2004.
Den vollen Inhalt der Quelle finden(Foreword), L. Peterson, B. J. Cole (Foreword) und Riley J. Williams (Editor), Hrsg. Cartilage Repair Strategies. Humana Press, 2007.
Den vollen Inhalt der Quelle findenDouglas, Kenneth. Bioprinting. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190943547.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Cartilage cells – Transplantation"
Karnatzikos, Georgios, Sotirios Vlachoudis und Alberto Gobbi. „Rehabilitation After Knee Cartilage Transplantation with Autologous Chondrocytes or Stem Cells“. In Sports Injuries, 1905–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36569-0_265.
Der volle Inhalt der QuelleKarnatzikos, Georgios, Sotirios Vlachoudis und Alberto Gobbi. „Rehabilitation After Knee Cartilage Transplantation with Autologous Chondrocytes or Stem Cells“. In Sports Injuries, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36801-1_265-1.
Der volle Inhalt der QuellePeterson, Lars. „Cartilage Cell Transplantation“. In Knee Surgery, 440–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-87202-0_33.
Der volle Inhalt der QuelleTomford, William W., und Henry J. Mankin. „Bone and cartilage transplantation“. In Yearbook of Cell and Tissue Transplantation 1996–1997, 37–40. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_4.
Der volle Inhalt der QuelleIbarra, Clemente, Robert Langer und Joseph P. Vacanti. „Tissue engineering: Cartilage, bone and muscle“. In Yearbook of Cell and Tissue Transplantation 1996–1997, 235–45. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_23.
Der volle Inhalt der QuelleSaltzman, W. Mark. „The State-of-the-Art in Tissue Exchange“. In Tissue Engineering. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195141306.003.0005.
Der volle Inhalt der QuelleDouglas, Kenneth. „Introduction“. In Bioprinting, 1–2. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190943547.003.0001.
Der volle Inhalt der QuelleSaltzman, W. Mark. „Delivery of Molecular Agents in Tissue Engineering“. In Tissue Engineering. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195141306.003.0017.
Der volle Inhalt der QuelleMendelson, Avital, Chang Hun Lee und Jeremy J. Mao. „CARTILAGE REGENERATION WITH AND WITHOUT CELL TRANSPLANTATION“. In Stem Cell Bioengineering and Tissue Engineering Microenvironment, 339–53. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789812837899_0012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cartilage cells – Transplantation"
Bian, Liming, Robert L. Mauck und Jason A. Burdick. „Dynamic Compressive Loading and Crosslinking Density Influence the Chondrogenic and Hypertrophic Differentiation of Human Mesenchymal Stem Cells Seeded in Hyaluronic Acid Hydrogels“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80048.
Der volle Inhalt der Quelle