Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Carboxylic acids Metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carboxylic acids Metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Carboxylic acids Metabolism"
Iwami, Y., S. Hata, N. Takahashi und T. Yamada. „Difference in Amounts between Titratable Acid and Total Carboxylic Acids Produced by Oral Streptococci during Sugar Metabolism“. Journal of Dental Research 68, Nr. 1 (Januar 1989): 16–19. http://dx.doi.org/10.1177/00220345890680010101.
Der volle Inhalt der QuelleGoyal, R., R. Tardif und J. Brodeur. „Influence of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid, on the urinary elimination of mercapturic acids of ethylene oxide, dibromoethane, and acrylonitrile: a dose–effect study“. Canadian Journal of Physiology and Pharmacology 67, Nr. 3 (01.03.1989): 207–12. http://dx.doi.org/10.1139/y89-035.
Der volle Inhalt der QuelleSarkar, Omprakash, A. Naresh Kumar, Shikha Dahiya, K. Vamshi Krishna, Dileep Kumar Yeruva und S. Venkata Mohan. „Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: metagenomic profiling“. RSC Advances 6, Nr. 22 (2016): 18641–53. http://dx.doi.org/10.1039/c5ra24254a.
Der volle Inhalt der QuelleDarnell, Malin, und Lars Weidolf. „Metabolism of Xenobiotic Carboxylic Acids: Focus on Coenzyme A Conjugation, Reactivity, and Interference with Lipid Metabolism“. Chemical Research in Toxicology 26, Nr. 8 (05.07.2013): 1139–55. http://dx.doi.org/10.1021/tx400183y.
Der volle Inhalt der QuelleBeaulieu, Pierre L., René Coulombe, James Gillard, Christian Brochu, Jianmin Duan, Michel Garneau, Eric Jolicoeur et al. „Allosteric N-acetamide-indole-6-carboxylic acid thumb pocket 1 inhibitors of hepatitis C virus NS5B polymerase — Acylsulfonamides and acylsulfamides as carboxylic acid replacements“. Canadian Journal of Chemistry 91, Nr. 1 (Januar 2013): 66–81. http://dx.doi.org/10.1139/cjc-2012-0319.
Der volle Inhalt der QuelleOmran, Arthur, Cesar Menor-Salvan, Greg Springsteen und Matthew Pasek. „The Messy Alkaline Formose Reaction and Its Link to Metabolism“. Life 10, Nr. 8 (28.07.2020): 125. http://dx.doi.org/10.3390/life10080125.
Der volle Inhalt der QuelleKnights, Kathleen M., Matthew J. Sykes und John O. Miners. „Amino acid conjugation: contribution to the metabolism and toxicity of xenobiotic carboxylic acids“. Expert Opinion on Drug Metabolism & Toxicology 3, Nr. 2 (April 2007): 159–68. http://dx.doi.org/10.1517/17425255.3.2.159.
Der volle Inhalt der QuelleBock, Susanne, Ulrich A. Sedlmeier und Klaus H. Hoffmann. „Metabolism of absorbed short-chain carboxylic acids by the freshwater oligochaete Tubifex tubifex“. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 92, Nr. 1 (Januar 1989): 35–40. http://dx.doi.org/10.1016/0305-0491(89)90309-x.
Der volle Inhalt der QuelleKnights, Kathleen M. „ROLE OF HEPATIC FATTY ACID:COENZYME A LIGASES IN THE METABOLISM OF XENOBIOTIC CARBOXYLIC ACIDS“. Clinical and Experimental Pharmacology and Physiology 25, Nr. 10 (Oktober 1998): 776–82. http://dx.doi.org/10.1111/j.1440-1681.1998.tb02152.x.
Der volle Inhalt der QuelleArun, Viswanath, Takashi Mino und Tomonori Matsuo. „Metabolism of Carboxylic Acids Located in and around the Glycolytic Pathway and the TCA Cycle in the Biological Phosphorus Removal Process“. Water Science and Technology 21, Nr. 4-5 (01.04.1989): 363–74. http://dx.doi.org/10.2166/wst.1989.0238.
Der volle Inhalt der QuelleDissertationen zum Thema "Carboxylic acids Metabolism"
Rocha, Sandra Carla. „Avaliação das perspectivas terapêuticas do ácido L-tiazolidina-4-carboxílico, um análogo de prolina, na infecção de camundongos pelo Trypanosoma cruzi“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-16082011-160411/.
Der volle Inhalt der QuelleTrypanosoma cruzi is dependent on proline for a variety of processes such as energy metabolism, host cell invasion, differentiation and resistance to osmotic, metabolic and oxidative stress. L-thiazolidine-4-carboxylic acid (T4C), a proline structural analogue, inhibits the proline uptake and interacts with several stress factors that the parasite undergoes throughout its life cycle. Herein, we evaluated the T4C effects on mice infection by T. cruzi. It was observed a reduction of 49% of the parasitemia peak in infected mice that were treated with a unique dose of T4C (100 mg/Kg). Histological and quantitative PCR analysis of several tissues revealed a significant reduction of parasite load in the intestine (100 or 150 mg/kg). In the other hand, the unique dose of 200 mg/Kg reduced the body weight and survival of non-infected mice. A T4C prolonged treatment (10 mg/Kg day), did not diminish the parasitemia, but increased survival and reduced the parasite load in the intestine. T4C did not affect the gene expression of g-IFN and IL-10 in any of the organs analyzed (heart, spleen, intestine). In conclusion, T4C-treatment contributes to reduce the virulence of T. cruzi infection, but it was toxic in doses over 150 mg/kg.
Li, Chien-Ming. „In Vitro and in Vivo Pharmacology of 4-Substituted Methoxybenzoyl-Aryl-Thiazoles (SMART) and 2-Arylthiazolidine-4-Carboxylic Acid Amides (ATCAA)“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281966183.
Der volle Inhalt der QuelleHermant, Paul. „Les acides hydroxamiques comme molécules bioactives. Conception, synthèse, propriétés pharmacocinétiques et évaluation biologique“. Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S021.
Der volle Inhalt der QuelleBiologically the hydroxamic acid function is founded in fungus, yeast, bacteria and plant as siderophore agent. This property to bind metals is widely used in medicinal chemistry to develop potent and selective inhibitors of metalloenzymes. Thus, hydroxamic acids are developed in numerous therapeutic areas such as infectiology, parasitology, oncology, cardio-metabolic or inflammatory diseases. The approval of hydroxamic acids inhibitors of HDACs, like vorinostat and belinostat for cutaneous T-cell lymphoma, supports the great therapeutic potential of this kind of molecules.Research exposed in this thesis deals with conception and synthesis of hydroxamic acids to explore on one hand, their in vitro and in vivo pharmacokinetics properties, and on another hand to develop some of them as inhibitors of insulin-degrading enzyme.After a general introduction about the biological properties of hydroxamic acids, we present the first comprehensive structure-plasma stability relationships, using a 57-member library displaying diverse pharmacophores. We have identified the structural motives that favor or block hydrolysis of hydroxamic acids in various biological fluids. Thanks to selective esterase inhibitors, we have evidenced which plasmatic esterases were involved in the hydrolysis of such compounds: arylesterases and carboxylesterases. These results were completed by a molecular modeling study on different hydroxamic acids substrates of these enzymes.Besides, pharmacodynamics and pharmacokinetics properties of hydroxamic acids inhibitors of insulin-degrading enzyme were explored via the development of a 19F NMR ligand-based assay, and the development of a new formulation to enhance the compound’s exposure in vivo. In the last part, we disclose the conception and synthesis of macrocyclic hydroxamic acids. Two new and complementary synthetic pathways were developed. One of them provided macrocyclic hydroxamic acids with size comprising between 24 and 26 atoms
Wu, Cheng-Hsueh, und 吳政學. „Pharmacokinetics of carbadox and determination of its metabolite ( quinoxaline-2-carboxylic acid; QCA ) in pigs following a single dose and multiple in-feed dosing“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/62693073412975175936.
Der volle Inhalt der Quelle國立屏東科技大學
獸醫學系所
96
The tissue distribution and residue depletion of carbadox and its metabolite ( quinoxaline-2-carboxylic acid, QCA ) were investigated in swine after a single oral dose of 3.5 mg/kg body weight of carbadox and multiple dose ( 2 weeks ) in-feed ( 55 ppm ) administration. Plasma, muscle, liver and kidney were sampled pre and post-treatment and subsequently analyzed for carbadox and QCA concentrations using liquid chromatography with tandem mass spectrometry ( LC-MS-MS ). The limits of detection of carbadox and QCA were 0.002 and 0.180 ng/g, the limits of quantitation were 0.005 and 0.606 ng/g for standard solution. Carbadox concentration in plasma was peaked on 2.6 hr after a single oral dose administration, while QCA concentration was still detected in liver ( 1.98 ng/g ) on the fifth week and kidney ( 0.9 ng/g ) on the sixth week after withdrawal. The apparent volume of distribution of carbadox at steady-state ( 4427.39 ± 2070.30 mL/kg ) and areas under the concentration curves ( 2327.58 ± 580.93 hr ng/mL ) indicates that the drug is adequately distributed throughout the body from the blood of pigs. The slow elimination of the carbadox metabolites suggests a need for long withdrawal periods prior to use of dosed swine for human consumption.
Bücher zum Thema "Carboxylic acids Metabolism"
Winter, Klaus, und J. Andrew C. Smith. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Springer, 2011.
Den vollen Inhalt der Quelle findenChalmers, R. A. Organic Acids in Man: The Analytical Chemistry, Biochemistry and Diagnosis of the Organic Acidurias. Springer, 2011.
Den vollen Inhalt der Quelle findenBeardsley, Grant D. Elimination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid when normalized to urinary creatinine. 1990.
Den vollen Inhalt der Quelle findenBeardsley, Grant D. Elimination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid when normalized to urinary creatinine. 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Carboxylic acids Metabolism"
Wermuth, Bendicht. „Inhibition of Aldehyde Reductase by Carboxylic Acids“. In Enzymology and Molecular Biology of Carbonyl Metabolism 3, 197–204. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5901-2_22.
Der volle Inhalt der QuelleRogosa, Morrison, Micah I. Krichevsky und Rita R. Colwell. „Carboxylic Acid or Ester Metabolism“. In Springer Series in Microbiology, 174–81. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4986-3_30.
Der volle Inhalt der QuelleYang, Shang Fa. „Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid in Relation to Ethylene Biosynthesis“. In Plant Nitrogen Metabolism, 263–87. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0835-5_8.
Der volle Inhalt der QuelleHonma, M., Y. J. Jia, Y. Kakuta und H. Matsui. „Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid by Penicillium Citrinum“. In Biology and Biotechnology of the Plant Hormone Ethylene II, 33–34. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4453-7_7.
Der volle Inhalt der QuellePech, Jean-Claude, Mondher Bouzayen, Gilbert Alibert und Alain Latché. „Subcellular Localization of 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Plant Cells“. In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, 33–40. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1271-7_4.
Der volle Inhalt der QuelleSposito, Garrison. „Soil Humus“. In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0007.
Der volle Inhalt der QuelleArun, Viswanath, Takashi Mino und Tomonori Matsuo. „METABOLISM OF CARBOXYLIC ACIDS LOCATED IN AND AROUND THE GLYCOLYTIC PATHWAY AND THE TCA CYCLE IN THE BIOLOGICAL PHOSPHORUS REMOVAL PROCESS“. In Water Pollution Research and Control Brighton, 363–74. Elsevier, 1988. http://dx.doi.org/10.1016/b978-1-4832-8439-2.50038-9.
Der volle Inhalt der Quelle„The Hydrolysis of Carboxylic Acid Esters“. In Hydrolysis in Drug and Prodrug Metabolism, 365–418. Zürich: Verlag Helvetica Chimica Acta, 2006. http://dx.doi.org/10.1002/9783906390444.ch7.
Der volle Inhalt der Quelle„The Hydrolysis of Carboxylic Acid Ester Prodrugs“. In Hydrolysis in Drug and Prodrug Metabolism, 419–534. Zürich: Verlag Helvetica Chimica Acta, 2006. http://dx.doi.org/10.1002/9783906390444.ch8.
Der volle Inhalt der QuelleYANG, S. F., Y. LIU, L. SU, G. D. PEISER, N. E. HOFFMAN und T. McKEON. „METABOLISM OF 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID“. In Ethylene and Plant Development, 9–21. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-407-00920-2.50006-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Carboxylic acids Metabolism"
Martynenko, Yulia, und Oleksii Antypenko. „Design of Hydrogenated Isoindolylalkyl(Alkaryl-, Aryl-)Carboxylic Acids with Quinazoline Fragment, that Modify the Carbohydrate Metabolism“. In International Youth Science Forum “Litteris et Artibus”. Lviv Polytechnic National University, 2018. http://dx.doi.org/10.23939/lea2018.01.155.
Der volle Inhalt der QuelleDe Clerck, F., R. Van de Wiele, B. Xhonneux, L. Van Gorp, Y. Somers, W. Loots, J. Beetens, J. Van Wauwe, E. Freyne und P. A. J. Janssen. „PLATELET TXA2 SYNTHETASE INHIBITION AND TXA2/PROSTAGLANDIN ENDOPEROXIDE RECEPTOR BLOCKADE COMBINED IN ONE MOLECULE (R 68070)“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643465.
Der volle Inhalt der Quelle