Zeitschriftenartikel zum Thema „Carbon payback time“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Carbon payback time" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bentsen, Niclas Scott. „Carbon debt and payback time – Lost in the forest?“ Renewable and Sustainable Energy Reviews 73 (Juni 2017): 1211–17. http://dx.doi.org/10.1016/j.rser.2017.02.004.
Der volle Inhalt der QuelleMello, Francisco F. C., Carlos E. P. Cerri, Christian A. Davies, N. Michele Holbrook, Keith Paustian, Stoécio M. F. Maia, Marcelo V. Galdos, Martial Bernoux und Carlos C. Cerri. „Payback time for soil carbon and sugar-cane ethanol“. Nature Climate Change 4, Nr. 7 (08.06.2014): 605–9. http://dx.doi.org/10.1038/nclimate2239.
Der volle Inhalt der Quellede Simón-Martín, Miguel, Montserrat Díez-Mediavilla und Cristina Alonso-Tristán. „Real Energy Payback Time and Carbon Footprint of a GCPVS“. AIMS Energy 5, Nr. 1 (2017): 77–95. http://dx.doi.org/10.3934/energy.2017.1.77.
Der volle Inhalt der Quelle(Mariska) de Wild-Scholten, M. J. „Energy payback time and carbon footprint of commercial photovoltaic systems“. Solar Energy Materials and Solar Cells 119 (Dezember 2013): 296–305. http://dx.doi.org/10.1016/j.solmat.2013.08.037.
Der volle Inhalt der QuelleUtamura, Motoaki. „Carbon Dioxide Emission Analysis With Energy Payback Effect“. Journal of Engineering for Gas Turbines and Power 126, Nr. 2 (01.04.2004): 322–28. http://dx.doi.org/10.1115/1.1691442.
Der volle Inhalt der QuelleFaludi, Jeremy, und Michael Lepech. „ECOLOGICAL PAYBACK TIME OF AN ENERGY-EFFICIENT MODULAR BUILDING“. Journal of Green Building 7, Nr. 1 (Januar 2012): 100–119. http://dx.doi.org/10.3992/jgb.7.1.100.
Der volle Inhalt der QuellePinto, Mauricio Almeida, Cláudio Albuquerque Frate, Thiago Oliveira Rodrigues und Armando Caldeira-Pires. „Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant“. Utilities Policy 63 (April 2020): 101014. http://dx.doi.org/10.1016/j.jup.2020.101014.
Der volle Inhalt der QuelleYang, Yi, und Sangwon Suh. „Marginal yield, technological advances, and emissions timing in corn ethanol’s carbon payback time“. International Journal of Life Cycle Assessment 20, Nr. 2 (29.11.2014): 226–32. http://dx.doi.org/10.1007/s11367-014-0827-x.
Der volle Inhalt der QuelleJiao, Yubo, Alex Salce, Wade Ben, Feng Jiang, Xiaoyang Ji, Evan Morey und David Lynch. „Siemens and siemens-like processes for producing photovoltaics: Energy payback time and lifetime carbon emissions“. JOM 63, Nr. 1 (Januar 2011): 28–31. http://dx.doi.org/10.1007/s11837-011-0007-4.
Der volle Inhalt der QuelleTian, Xueyu, Samuel D. Stranks und Fengqi You. „Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells“. Science Advances 6, Nr. 31 (Juli 2020): eabb0055. http://dx.doi.org/10.1126/sciadv.abb0055.
Der volle Inhalt der QuelleMadsen, Kristian, und Niclas Bentsen. „Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe“. Energies 11, Nr. 4 (31.03.2018): 807. http://dx.doi.org/10.3390/en11040807.
Der volle Inhalt der QuelleHu, Allen, Lance Huang, Sylvia Lou, Chien-Hung Kuo, Chin-Yao Huang, Ke-Jen Chian, Hao-Ting Chien und Hwen-Fen Hong. „Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System“. Sustainability 9, Nr. 1 (25.12.2016): 27. http://dx.doi.org/10.3390/su9010027.
Der volle Inhalt der QuelleTodde, Giuseppe, Lelia Murgia, Isaac Carrelo, Rita Hogan, Antonio Pazzona, Luigi Ledda und Luis Narvarte. „Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems“. Energies 11, Nr. 8 (14.08.2018): 2110. http://dx.doi.org/10.3390/en11082110.
Der volle Inhalt der QuelleMarrone, Paola, Francesco Asdrubali, Daniela Venanzi, Federico Orsini, Luca Evangelisti, Claudia Guattari, Roberto De Lieto Vollaro et al. „On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues“. Energies 14, Nr. 5 (25.02.2021): 1276. http://dx.doi.org/10.3390/en14051276.
Der volle Inhalt der QuellePrakash, Om, und Anil Kumar. „Environomical Analysis and Mathematical Modelling for Tomato Flakes Drying in a Modified Greenhouse Dryer under Active Mode“. International Journal of Food Engineering 10, Nr. 4 (01.12.2014): 669–81. http://dx.doi.org/10.1515/ijfe-2013-0063.
Der volle Inhalt der QuelleZhang, Hanfei, Ligang Wang, Jan Van herle, François Maréchal und Umberto Desideri. „Techno-Economic Optimization of CO2-to-Methanol with Solid-Oxide Electrolyzer“. Energies 12, Nr. 19 (30.09.2019): 3742. http://dx.doi.org/10.3390/en12193742.
Der volle Inhalt der QuelleMahmoud, Ahmed, und Jaka Sunarso. „A new graphical method to target carbon dioxide emission reductions by simultaneously aligning fuel switching, energy saving, investment cost, carbon credit, and payback time“. International Journal of Energy Research 42, Nr. 4 (27.11.2017): 1551–62. http://dx.doi.org/10.1002/er.3946.
Der volle Inhalt der QuelleVirupaksha, Vinay, Mary Harty und Kevin McDonnell. „Microgeneration of Electricity Using a Solar Photovoltaic System in Ireland“. Energies 12, Nr. 23 (03.12.2019): 4600. http://dx.doi.org/10.3390/en12234600.
Der volle Inhalt der QuelleKassai, Miklós. „Heat Pump Heating System Development of Educational Building based on Energy, Economical and Environmental Impacts“. Periodica Polytechnica Mechanical Engineering 63, Nr. 3 (20.05.2019): 207–13. http://dx.doi.org/10.3311/ppme.13872.
Der volle Inhalt der QuelleRengasamy, Mageswaran, Sivasankar Gangatharan, Rajvikram Madurai Elavarasan und Lucian Mihet-Popa. „The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics“. Sustainability 12, Nr. 24 (11.12.2020): 10365. http://dx.doi.org/10.3390/su122410365.
Der volle Inhalt der QuelleSander, Leon, Christopher Jung und Dirk Schindler. „Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany“. Wind 1, Nr. 1 (08.09.2021): 1–19. http://dx.doi.org/10.3390/wind1010001.
Der volle Inhalt der QuelleZahran, A., A. M. Arafa, A. M. Alaam und G. El Saiedy. „Environmental and Economic Benefits of Some Air Pollutants Control Case Study: Emissions from different Boilers of different Factories“. Environmental Management and Sustainable Development 9, Nr. 1 (26.01.2020): 122. http://dx.doi.org/10.5296/emsd.v9i1.16352.
Der volle Inhalt der QuelleAsamoah, J. „Innovation in the economic performance of a power station through monetised carbon dioxide credits“. Journal of Energy in Southern Africa 18, Nr. 4 (01.08.2007): 11–13. http://dx.doi.org/10.17159/2413-3051/2007/v18i4a3388.
Der volle Inhalt der QuelleCui, Yuanlong, Elmer Theo, Tugba Gurler, Yuehong Su und Riffat Saffa. „A comprehensive review on renewable and sustainable heating systems for poultry farming“. International Journal of Low-Carbon Technologies 15, Nr. 1 (20.11.2019): 121–42. http://dx.doi.org/10.1093/ijlct/ctz048.
Der volle Inhalt der QuelleAhmad Ludin, Norasikin, Nurfarhana Alyssa Ahmad Affandi, Kathleen Purvis-Roberts, Azah Ahmad, Mohd Adib Ibrahim, Kamaruzzaman Sopian und Sufian Jusoh. „Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach“. Sustainability 13, Nr. 1 (04.01.2021): 396. http://dx.doi.org/10.3390/su13010396.
Der volle Inhalt der QuelleNajini, Hiba, und Senthil Arumugam Muthukumaraswamy. „Piezoelectric Energy Generation from Vehicle Traffic with Technoeconomic Analysis“. Journal of Renewable Energy 2017 (2017): 1–16. http://dx.doi.org/10.1155/2017/9643858.
Der volle Inhalt der QuelleConstantino, Gabriel, Marcos Freitas, Neilton Fidelis und Marcio Pereira. „Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts“. Energies 11, Nr. 10 (18.10.2018): 2806. http://dx.doi.org/10.3390/en11102806.
Der volle Inhalt der QuelleMonzón-Chavarrías, Marta, Silvia Guillén-Lambea, Sergio García-Pérez, Antonio Luis Montealegre-Gracia und Jorge Sierra-Pérez. „Heating Energy Consumption and Environmental Implications Due to the Change in Daily Habits in Residential Buildings Derived from COVID-19 Crisis: The Case of Barcelona, Spain“. Sustainability 13, Nr. 2 (18.01.2021): 918. http://dx.doi.org/10.3390/su13020918.
Der volle Inhalt der QuelleMetcalf, Steven, Ángeles Rivero-Pacho und Robert Critoph. „Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps“. Energies 14, Nr. 11 (05.06.2021): 3332. http://dx.doi.org/10.3390/en14113332.
Der volle Inhalt der QuellePiotrowska-Woroniak, Joanna. „The Photovoltaic Installation Application in the Public Utility Building“. Ecological Chemistry and Engineering S 24, Nr. 4 (01.12.2017): 517–38. http://dx.doi.org/10.1515/eces-2017-0034.
Der volle Inhalt der QuelleBranco, Najmat Celene, und Carolina M. Affonso. „Probabilistic Approach to Integrate Photovoltaic Generation into PEVs Charging Stations Considering Technical, Economic and Environmental Aspects“. Energies 13, Nr. 19 (29.09.2020): 5086. http://dx.doi.org/10.3390/en13195086.
Der volle Inhalt der QuelleWang, Xiaohang, Wentong Chong, Kokhoe Wong, Saihin Lai, Liphuat Saw, Xianbo Xiang und Chin-Tsan Wang. „Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application“. Energies 12, Nr. 8 (19.04.2019): 1496. http://dx.doi.org/10.3390/en12081496.
Der volle Inhalt der QuelleSavickis, J., A. Ansone, L. Zemite, I. Bode, L. Jansons, N. Zeltins, A. Koposovs, L. Vempere und E. Dzelzitis. „The Natural Gas as a Sustainable Fuel Atlernative in Latvia“. Latvian Journal of Physics and Technical Sciences 58, Nr. 3 (01.06.2021): 169–85. http://dx.doi.org/10.2478/lpts-2021-0024.
Der volle Inhalt der QuelleRajoria, C. S., Sanjay Agrawal, Amit K. Dash, G. N. Tiwari und M. S. Sodha. „A newer approach on cash flow diagram to investigate the effect of energy payback time and earned carbon credits on life cycle cost of different photovoltaic thermal array systems“. Solar Energy 124 (Februar 2016): 254–67. http://dx.doi.org/10.1016/j.solener.2015.11.034.
Der volle Inhalt der QuelleZani, Caio F., Arlete S. Barneze, Andy D. Robertson, Aidan M. Keith, Carlos E. P. Cerri, Niall P. McNamara und Carlos C. Cerri. „Vinasse application and cessation of burning in sugarcane management can have positive impact on soil carbon stocks“. PeerJ 6 (07.08.2018): e5398. http://dx.doi.org/10.7717/peerj.5398.
Der volle Inhalt der QuelleLima, Gabriel Constantino de, Andre Luiz Lopes Toledo und Leonidas Bourikas. „The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases“. Energies 14, Nr. 4 (11.02.2021): 961. http://dx.doi.org/10.3390/en14040961.
Der volle Inhalt der QuelleAyyappan, S. „Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying“. Energy & Environment 29, Nr. 8 (09.06.2018): 1482–94. http://dx.doi.org/10.1177/0958305x18781891.
Der volle Inhalt der QuelleAndrei, Horia, Cristian Andrei Badea, Paul Andrei und Filippo Spertino. „Energetic-Environmental-Economic Feasibility and Impact Assessment of Grid-Connected Photovoltaic System in Wastewater Treatment Plant: Case Study“. Energies 14, Nr. 1 (27.12.2020): 100. http://dx.doi.org/10.3390/en14010100.
Der volle Inhalt der QuelleLi, Cong, Hua Zheng, Shuzhuo Li, Xiaoshu Chen, Jie Li, Weihong Zeng, Yicheng Liang et al. „Impacts of conservation and human development policy across stakeholders and scales“. Proceedings of the National Academy of Sciences 112, Nr. 24 (15.06.2015): 7396–401. http://dx.doi.org/10.1073/pnas.1406486112.
Der volle Inhalt der QuelleAleksiejuk-Gawron, Joanna, Saulė Milčiuvienė, Julija Kiršienė, Enrique Doheijo, Diego Garzon, Rolandas Urbonas und Darius Milčius. „Net-Metering Compared to Battery-Based Electricity Storage in a Single-Case PV Application Study Considering the Lithuanian Context“. Energies 13, Nr. 9 (05.05.2020): 2286. http://dx.doi.org/10.3390/en13092286.
Der volle Inhalt der QuelleD’Adamo, Idiano. „The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO2 in a Developed PV Market“. Social Sciences 7, Nr. 9 (31.08.2018): 148. http://dx.doi.org/10.3390/socsci7090148.
Der volle Inhalt der QuelleMukhtar, Mustapha, Sandra Obiora, Nasser Yimen, Zhang Quixin, Olusola Bamisile, Pauline Jidele und Young I. Irivboje. „Effect of Inadequate Electrification on Nigeria’s Economic Development and Environmental Sustainability“. Sustainability 13, Nr. 4 (19.02.2021): 2229. http://dx.doi.org/10.3390/su13042229.
Der volle Inhalt der QuelleRajput, Pramod, Maria Malvoni, Nallapaneni Manoj Kumar, O. S. Sastry und Arunkumar Jayakumar. „Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates“. Sustainability 12, Nr. 3 (03.02.2020): 1075. http://dx.doi.org/10.3390/su12031075.
Der volle Inhalt der QuelleBeccali, Marco, Marina Bonomolo, Biagio Di Pietra, Giuliana Leone und Francesca Martorana. „Solar and Heat Pump Systems for Domestic Hot Water Production on a Small Island: The Case Study of Lampedusa“. Applied Sciences 10, Nr. 17 (28.08.2020): 5968. http://dx.doi.org/10.3390/app10175968.
Der volle Inhalt der QuelleYahya, Sulaiman Al, Tahir Iqbal, Muhammad Mubashar Omar und Munir Ahmad. „Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia“. Energies 14, Nr. 19 (23.09.2021): 6048. http://dx.doi.org/10.3390/en14196048.
Der volle Inhalt der QuelleRolls, Will, und Piers M. Forster. „Quantifying forest growth uncertainty on carbon payback times in a simple biomass carbon model“. Environmental Research Communications 2, Nr. 4 (07.04.2020): 045001. http://dx.doi.org/10.1088/2515-7620/ab7ff3.
Der volle Inhalt der QuelleCastro Oliveira, Miguel, und Muriel Iten. „Modelling of A Solar Thermal Energy System For Energy Efficiency Improvement In A Ceramic Plant“. Renewable Energy and Environmental Sustainability 6 (2021): 31. http://dx.doi.org/10.1051/rees/2021029.
Der volle Inhalt der QuelleStaffell, Iain, Andrew Ingram und Kevin Kendall. „Energy and carbon payback times for solid oxide fuel cell based domestic CHP“. International Journal of Hydrogen Energy 37, Nr. 3 (Februar 2012): 2509–23. http://dx.doi.org/10.1016/j.ijhydene.2011.10.060.
Der volle Inhalt der QuelleGibbs, Holly K., Matt Johnston, Jonathan A. Foley, Tracey Holloway, Chad Monfreda, Navin Ramankutty und David Zaks. „Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology“. Environmental Research Letters 3, Nr. 3 (Juli 2008): 034001. http://dx.doi.org/10.1088/1748-9326/3/3/034001.
Der volle Inhalt der QuelleMartinez Castilla, Guillermo, Diana Carolina Guío-Pérez, Stavros Papadokonstantakis, David Pallarès und Filip Johnsson. „Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO2 Capture“. Energies 14, Nr. 11 (31.05.2021): 3211. http://dx.doi.org/10.3390/en14113211.
Der volle Inhalt der Quelle