Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Carbon-Nitrozen bond(C-N) formation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carbon-Nitrozen bond(C-N) formation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Carbon-Nitrozen bond(C-N) formation"
Cataldo, Franco. „Cyanopolyynes: carbon chains formation in a carbon arc mimicking the formation of carbon chains in the circumstellar medium“. International Journal of Astrobiology 3, Nr. 3 (Juli 2004): 237–46. http://dx.doi.org/10.1017/s1473550404002149.
Der volle Inhalt der QuelleKärkäs, Markus D. „Electrochemical strategies for C–H functionalization and C–N bond formation“. Chemical Society Reviews 47, Nr. 15 (2018): 5786–865. http://dx.doi.org/10.1039/c7cs00619e.
Der volle Inhalt der QuelleMöhlmann, Lennart, Moritz Baar, Julian Rieß, Markus Antonietti, Xinchen Wang und Siegfried Blechert. „Carbon Nitride-Catalyzed Photoredox CC Bond Formation with N-Aryltetrahydroisoquinolines“. Advanced Synthesis & Catalysis 354, Nr. 10 (05.06.2012): 1909–13. http://dx.doi.org/10.1002/adsc.201100894.
Der volle Inhalt der QuelleLi, Jing-Yuan, Qing-Wen Song, Kan Zhang und Ping Liu. „Catalytic Conversion of Carbon Dioxide through C-N Bond Formation“. Molecules 24, Nr. 1 (05.01.2019): 182. http://dx.doi.org/10.3390/molecules24010182.
Der volle Inhalt der QuelleKerru, Nagaraju, Suresh Maddila und Sreekantha B. Jonnalagadda. „Design of Carbon-carbon and Carbon-heteroatom Bond Formation Reactions under Green Conditions“. Current Organic Chemistry 23, Nr. 28 (17.01.2020): 3154–90. http://dx.doi.org/10.2174/1385272823666191202105820.
Der volle Inhalt der QuelleMoehlmann, Lennart, Moritz Baar, Julian Riess, Markus Antonietti, Xinchen Wang und Siegfried Blechert. „ChemInform Abstract: Carbon Nitride-Catalyzed Photoredox C-C Bond Formation with N-Aryltetrahydroisoquinolines.“ ChemInform 43, Nr. 50 (29.11.2012): no. http://dx.doi.org/10.1002/chin.201250155.
Der volle Inhalt der QuelleKamanna, Kantharaju, und Santosh Y. Khatavi. „Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview“. Current Microwave Chemistry 7, Nr. 1 (23.06.2020): 23–39. http://dx.doi.org/10.2174/2213346107666200218124147.
Der volle Inhalt der QuelleYang, Zhen-Zhen, Liang-Nian He, Jiao Gao, An-Hua Liu und Bing Yu. „Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion“. Energy & Environmental Science 5, Nr. 5 (2012): 6602. http://dx.doi.org/10.1039/c2ee02774g.
Der volle Inhalt der QuelleCurrie, Lucy, Luca Rocchigiani, David L. Hughes und Manfred Bochmann. „Carbon–sulfur bond formation by reductive elimination of gold(iii) thiolates“. Dalton Transactions 47, Nr. 18 (2018): 6333–43. http://dx.doi.org/10.1039/c8dt00906f.
Der volle Inhalt der QuelleNi, Jing, und Xi Ping Hao. „Carbon Nitride Films Prepared by PECVD in CH4-NH3 Precursor“. Advanced Materials Research 538-541 (Juni 2012): 124–27. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.124.
Der volle Inhalt der QuelleDissertationen zum Thema "Carbon-Nitrozen bond(C-N) formation"
Chakraborty, Rakesh Ranjan. „Explorative studies on carbon-nitrogen (C-N) bond formation and synthesis of nitrogen containing heterocyclic compounds“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2798.
Der volle Inhalt der QuelleDabb, Serin Lloyd Chemistry Faculty of Science UNSW. „Hydrazine in late transition metal-mediated N-C bond formation“. Publisher:University of New South Wales. Chemistry, 2008. http://handle.unsw.edu.au/1959.4/41428.
Der volle Inhalt der QuelleCai, Yingxiao. „Cobalt-catalyzed carbon-carbon bond formation by activation of carbon-halogen or carbon-hydrogen bonds“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX039/document.
Der volle Inhalt der QuelleThis thesis presents the development of cobalt-catalyzed carbon-carbon bonds formation. The first chapter describes a novel cobalt-catalyzed electrophilic cyanation of arylzinc species, employing benign and non-toxic N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) as the cyano source. In this reaction, cobalt catalyzes both the formation of arylzinc species and the cyanation reaction. Various benzonitriles are synthesized affording good to excellent yields. Using cobalt-bipyridine complexes instead of CoBr2, ketone and nitrile groups can be tolerated. The second chapter reports cobalt-catalyzed Csp3-Csp3 homocoupling reaction. A simple catalytic system could deliver dimers of a number of alkyl halides/pseudohalides and allylic acetates. Sodium iodide is crucial for the homocoupling of unactivated alkyl chlorides and tosylates. This method is extended to alkyl-alkyl cross-coupling; however, the conditions still need to be optimized. The third chapter describes a cobalt-catalyzed vinyl-benzyl cross-coupling. A variety of functionalized vinyl bromides and benzyl chlorides are efficiently coupled under mild conditions in good to excellent yields, with retention of Z/E configuration. A few mechanistic experiments indicate a single electron transfer involved. The last chapter discusses the progress on the cobalt-catalyzed arylation of 2-phenylpyridine with an arylzinc species by C-H activation and promising results are obtained
Ebe, Yusuke. „Iridium-Catalyzed Carbon-Carbon Bond Formation Reactions via C-H Bond Activation“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225417.
Der volle Inhalt der QuelleArambasic, Milan. „Carbon-carbon bond formation via rhodium-catalysed C-S activation processes“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:e9e29a73-e637-4844-9a37-58b5ae4a3f99.
Der volle Inhalt der QuelleSirokman, Gergely. „(N-heterocyclic-carbene)Copper(I)-catalyzed carbon-carbon bond formation using carbon dioxide“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39584.
Der volle Inhalt der QuelleVita.
Includes bibliographical references.
This thesis presents work towards the development of a new catalytic C-C bond forming reaction. Alkynes and olefins insert into [(IPr)CuH]2 (IPr = N,N-bis-(2,6-diisopropylphenyl)-1,3-imidazol-2-ylidene) to give copper vinyl and copper alkyl complexes. These copper complexes insert CO2 into the Cu-C bond to form copper acrylate and copper carboxylate complexes. Acrylic and carboxylic acids can be isolated by hydrolysis. A catalytic cycle based on (IPr)copper(I) was developed. Alkynes undergo reductive carboxylation to give acrylic acids in moderate yields. Unexpected interactions between several components of the catalytic system led to a number of side reaction, most importantly between [(IPr)CuH]2 and the product silyl acrylate. The use of silylcarbonate salts to desylilate the product enhanced yield. In addition, silylcarbonates can also serve as a source of CO2.
by Gergely Sirokman.
Ph.D.
Masuda, Yuusuke. „Development of New C-C Bond Forming Reactions Utilizing Light as Energy Source“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225634.
Der volle Inhalt der QuelleHeckler, James E. „Advances in gold-carbon bond formation: mono-, di-, and triaurated organometallics“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1441363597.
Der volle Inhalt der QuelleKunchithapatham, Kamala. „Development of Calcium and Palladium Catalysts for the Formation of Carbon-Carbon and Carbon-Heteroatom Bonds“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337955731.
Der volle Inhalt der QuelleBurgener, Simon [Verfasser], und Tobias Jürgen [Akademischer Betreuer] Erb. „Expanding the repertoire of enzymatic C-C bond formation with one-carbon units / Simon Burgener ; Betreuer: Tobias Jürgen Erb“. Marburg : Philipps-Universität Marburg, 2021. http://d-nb.info/1239239890/34.
Der volle Inhalt der QuelleBücher zum Thema "Carbon-Nitrozen bond(C-N) formation"
C-X bond formation. Heidelberg: Springer, 2010.
Den vollen Inhalt der Quelle findenVigalok, Arkadi. C-X Bond Formation. Springer, 2012.
Den vollen Inhalt der Quelle findenTaber, Douglass F., und Tristan Lambert. Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Carbon-Nitrozen bond(C-N) formation"
Wolfe, John P., Joshua D. Neukom und Duy H. Mai. „Synthesis of Saturated Five-Membered Nitrogen Heterocycles via Pd-Catalyzed CN Bond-Forming Reactions“. In Catalyzed Carbon-Heteroatom Bond Formation, 1–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch1.
Der volle Inhalt der QuelleSong, Qing-Wen, und Liang-Nian He. „Heterocyclic Synthesis Through C-N Bond Formation with Carbon Dioxide“. In Chemistry Beyond Chlorine, 435–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30073-3_16.
Der volle Inhalt der QuelleBichler, Paul, und Jennifer A. Love. „Organometallic Approaches to Carbon–Sulfur Bond Formation“. In C-X Bond Formation, 39–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12073-2_3.
Der volle Inhalt der QuelleVigalok, Arkadi, und Ariela W. Kaspi. „Late Transition Metal-Mediated Formation of Carbon–Halogen Bonds“. In C-X Bond Formation, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12073-2_2.
Der volle Inhalt der QuelleWidenhoefer, Ross A., und Feijie Song. „Gold-Catalyzed Addition of Oxygen Nucleophiles to CC Multiple Bonds“. In Catalyzed Carbon-Heteroatom Bond Formation, 463–92. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch12.
Der volle Inhalt der QuelleLebel, Hélène. „Rhodium-Catalyzed CH Aminations“. In Catalyzed Carbon-Heteroatom Bond Formation, 137–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch5.
Der volle Inhalt der QuelleWidenhoefer, Ross A., und Feijie Song. „Gold-Catalyzed Addition of Nitrogen and Sulfur Nucleophiles to CC Multiple Bonds“. In Catalyzed Carbon-Heteroatom Bond Formation, 437–61. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch11.
Der volle Inhalt der QuelleYeung, Charles S., Peter K. Dornan und Vy M. Dong. „Transition Metal Catalyzed Approaches to Lactones Involving CO Bond Formation“. In Catalyzed Carbon-Heteroatom Bond Formation, 35–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch2.
Der volle Inhalt der QuelleHoberg, Heinz. „Stoichiometric Reactions of C-C Bond Formation Promoted by Metal Systems“. In Carbon Dioxide as a Source of Carbon, 275–93. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3923-3_15.
Der volle Inhalt der QuelleBae, Chulsung. „Catalytic Carbon–Boron Bond Formation via Activation of Alkane C–H Bonds“. In Catalysis by Metal Complexes, 73–111. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-3698-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Carbon-Nitrozen bond(C-N) formation"
Sahu, Sunil, Anil Tyagi, Yonghwee Kim und Arjun Puri. „Accurate Identification of Gas-Bearing Formation in a Mature Field Using Pulsed Neutron Logs Prevented Well Abandonment“. In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214153-ms.
Der volle Inhalt der QuelleIvanova, M. S., M. V. Vishnetskaya und K. O. Tomsky. „Kinetics of carbon dioxide absorption and C-C bond formation in media containing trifluoroacetic acid“. In ACTUAL PROBLEMS OF ORGANIC CHEMISTRY AND BIOTECHNOLOGY (OCBT2020): Proceedings of the International Scientific Conference. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0070381.
Der volle Inhalt der QuelleAcquaviva, S., E. D’Anna, M. L. De Giorgi, G. Leggieri, A. Luches, M. Martino, A. Perrone und A. Zocco. „Carbon Nitride Films Synthesis and Deposition by Excimer Laser Ablation of Graphite Targets in Nitrogen Atmosphere“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cmf3.
Der volle Inhalt der QuelleAkram, M. Zuhaib, Yangbo Deng, Muhammad Aziz, Bingquan Ge und Hao Jiang. „<bold>NH</bold> <sub> <bold>3</bold> </sub> <bold>Impact on Combustion and Emission Characteristics of N-Heptane Flame</bold>“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0329.
Der volle Inhalt der QuelleBolotov, Vasiliy Alexandrovich, Serguei Fedorovich Tikhov, Konstantin Radikovich Valeev, Vladimir Timurovich Shamirzaev und Valentin Nikolaevich Parmon. „SELECTIVE FORMATION OF LINEAR ALPHA-OLEFINS VIA MICROWAVE CATALYTIC CRACKING OF LIQUID STRAIGHT-CHAIN ALKANES“. In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9894.
Der volle Inhalt der QuelleNarumanchi, Sreekant, Douglas DeVoto, Mark Mihalic, Tim Popp und Patrick McCluskey. „Thermal Performance and Reliability of Large-Area Bonded Interfaces in Power Electronics Packages“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65399.
Der volle Inhalt der QuelleKumar, Anand, und Anchu Ashok. „Catalytic Decomposition of Ethanol over Bimetallic Nico Catalysts for Carbon Nanotube Synthesis“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0039.
Der volle Inhalt der QuelleAikman, Michael John Lundin. „Clean Energy from Oil: A Process to Generate Low Cost, Low Carbon Electricity from Mature and Depleted Oil Fields“. In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210940-ms.
Der volle Inhalt der QuelleYang, Silin, Ahmed Raslan, Antoine Durocher, Felix Güthe und Jeffrey Bergthorson. „Numerical Investigation of NH3 Doped Fuels From Biomass Gasification on Fuel-Bound NOx Formation at Gas Turbine Conditions“. In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103191.
Der volle Inhalt der QuelleSabet, Seyed Morteza, Hassan Mahfuz, Andrew C. Terentis und Javad Hashemi. „A New Approach to the Synthesis of Carbon Nanotube-Polyhedral Oligomeric Silsesquioxane (POSS) Nanohybrids“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50925.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Carbon-Nitrozen bond(C-N) formation"
Shomer, Ilan, Ruth E. Stark, Victor Gaba und James D. Batteas. Understanding the hardening syndrome of potato (Solanum tuberosum L.) tuber tissue to eliminate textural defects in fresh and fresh-peeled/cut products. United States Department of Agriculture, November 2002. http://dx.doi.org/10.32747/2002.7587238.bard.
Der volle Inhalt der Quelle