Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Carbon interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carbon interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Carbon interaction"
Paryzhak, S. Ya, T. I. Dumych, S. M. Peshkova, E. E. Bila, A. D. Lutsyk, A. Barras, R. Boukherroub, S. Szunerits und R. O. Bilyy. „Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues“. Ukrainian Biochemical Journal 91, Nr. 2 (01.04.2019): 41–50. http://dx.doi.org/10.15407/ubj91.02.041.
Der volle Inhalt der QuelleAyala, J. A., W. M. Hess, F. D. Kistler und G. A. Joyce. „Carbon-Black-Elastomer Interaction“. Rubber Chemistry and Technology 64, Nr. 1 (01.03.1991): 19–39. http://dx.doi.org/10.5254/1.3538537.
Der volle Inhalt der QuelleBittencourt, C., M. Hecq, A. Felten, J. J. Pireaux, J. Ghijsen, M. P. Felicissimo, P. Rudolf, W. Drube, X. Ke und G. Van Tendeloo. „Platinum–carbon nanotube interaction“. Chemical Physics Letters 462, Nr. 4-6 (September 2008): 260–64. http://dx.doi.org/10.1016/j.cplett.2008.07.082.
Der volle Inhalt der QuelleBrown, T. C., und B. S. Haynes. „Interaction of carbon monoxide with carbon and carbon surface oxides“. Energy & Fuels 6, Nr. 2 (März 1992): 154–59. http://dx.doi.org/10.1021/ef00032a006.
Der volle Inhalt der QuelleSoares, Jaqueline S., und Ado Jorio. „Study of Carbon Nanotube-Substrate Interaction“. Journal of Nanotechnology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/512738.
Der volle Inhalt der QuelleHATTORI, Takeshi, und Miki IWADE. „Carbon Black and Solvent Interaction“. Journal of the Japan Society of Colour Material 93, Nr. 4 (20.04.2020): 116–20. http://dx.doi.org/10.4011/shikizai.93.116.
Der volle Inhalt der QuelleZüttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi und L. Schlapbach. „Hydrogen Interaction with Carbon Nanostructures“. Materials Science Forum 377 (Juni 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/msf.377.95.
Der volle Inhalt der QuelleZüttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi und L. Schlapbach. „Hydrogen Interaction with Carbon Nanostructures“. Journal of Metastable and Nanocrystalline Materials 11 (Juni 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/jmnm.11.95.
Der volle Inhalt der QuelleUmadevi, Deivasigamani, Swati Panigrahi und Garikapati Narahari Sastry. „Noncovalent Interaction of Carbon Nanostructures“. Accounts of Chemical Research 47, Nr. 8 (17.07.2014): 2574–81. http://dx.doi.org/10.1021/ar500168b.
Der volle Inhalt der QuelleWeigert, F. J. „Interaction of perfluorocarbons with carbon“. Journal of Fluorine Chemistry 65, Nr. 1-2 (November 1993): 67–71. http://dx.doi.org/10.1016/s0022-1139(00)80475-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Carbon interaction"
Rahmat, Meysam. „Carbon nanotube - polymer interaction in nanocomposites“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104648.
Der volle Inhalt der QuelleLes nanocomposites avec des polymères renforcés de nanotubes de carbone ont été le centre d'attention de nombreuses études dans les dernières années. Les propriétés supérieures des nanotubes de carbone et la flexibilité des polymères à être utilisés dans de diverses applications ont créé de grandes attentes pour cette classe de nanocomposites. Des études de modélisation ont démontré un fort potentiel pour ces matériaux, cependant la validation expérimentale de ces propriétés prédites reste un défi. Une des principales difficultés est l'obtention d'une interaction optimale entre les nanotubes et la matrice polymère. Cette interaction influence la dispersion des nanotubes dans le polymère et affecte les propriétés globales du nanocomposite. De ce fait, l'objectif principal de ce travail de recherche a été l'étude de l'interaction entre les nanotubes de carbone et le polymère dans les nanocomposites. A partir d'une revue détaillée de la littérature, la méthode de dynamique moléculaire et la microscopie à force atomique ont été choisies comme techniques numériques et expérimentales pour étudier l'interaction. Dans la partie de modélisation, les propriétés d'interface d'un nanotube à paroi simple avec du poly(methyl methacrylate) ont été obtenues à partir d'une simulation d'un test d'arrachement en trois phases. Une énergie de liaison d'interface de 0.39 kcal/molÅ2 a été calculée par la simulation de dynamique moléculaire. Dans la section expérimentale, une méthode de discrétisation par étapes a été proposée en tant que nouvelle technique de mesure de l'interaction par microscopie à force atomique. De plus, un nouvel paramètre d'interaction, appelé contrainte d'interaction, a été introduit pour évaluer la qualité de l'interaction dans les nanocomposites. La méthode de discrétisation par étapes a été utilisée pour le nanocomposite de poly(methyl methacrylate) avec un nanotube de carbone à paroi simple, et une interaction maximale de contrainte de 7 MPa a été obtenue. Les résultats ont été ensuite utilisés pour la théorie classique de contact et une théorie de contact à l'échelle nano. Les données sur les interactions de contraintes ont été aussi utilisées comme entrées pour des simulations de dynamique moléculaire «gros grains» afin d'obtenir les propriétés d'interface des nanocomposites. Cette nouvelle approche bénéficie de la flexibilité de la méthode de dynamique moléculaire «gros grains» et de la fiabilité des données expérimentales obtenues par la microscopie à force atomique. À partir des résultats de la méthode de dynamique moléculaire «gros grains», l'énergie de liaison d'interface d'un nanocomposite de nanotube de carbone–poly(methyl methacrylate) a été estimée à 0.44 kcal/molÅ2. Cette valeur a été comparée à l'énergie de liaison d'interface obtenue par la méthode de dynamique moléculaire (i.e., 0.39 kcal/molÅ2). La bonne corrélation entre les résultats basés sur des approches numériques et expérimentales démontre la validité de cette étude ainsi que la robustesse des méthodes proposées et des paramètres développés.
Alam, Md Kawsar. „Interaction of electron beams with carbon nanotubes“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36530.
Der volle Inhalt der QuelleLourenço, Leandro Miguel de Oliveira. „Phthalocyanines : interaction with carbon structures and as PDT agents“. Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13125.
Der volle Inhalt der QuelleThis dissertation describes the synthesis and characterization of different phthalocyanine (Pc) derivatives, as well as some porphyrins (Pors), for supramolecular interaction with different carbon nanostructures, to evaluate their potential application in electronic nanodevices. Likewise, it is also reported the preparation and biological evaluation of interesting phthalocyanine conjugates for cancer photodynamic therapy (PDT) and microorganisms photodynamic inactivation (PDI). The phthalonitrile precursors were prepared from commercial phthalonitriles by nucleophilic substitution of -NO2, -Cl, or -F groups, present in the phthalonitrile core, by thiol or pyridyl units. After the synthesis of these phthalonitriles, the corresponding Pcs were prepared by ciclotetramerization using a metallic salt as template at high temperatures. A second strategy involved the postfunctionalization of hexadecafluorophthalocyaninato zinc(II) through the adequate substituents of mercaptopyridine or cyclodextrin units on the macrocycle periphery. The different compounds were structurally characterized by diverse spectroscopic techniques, namely 1H, 13C and 19F nuclear magnetic resonance spectroscopies (attending the elemental composition of each structure); absorption and emission spectroscopy, and mass spectrometry. For the specific photophysical studies were also used electrochemical characterization, femtosecond and raman spectroscopy, transmission electron and atomic force microscopy. It was highlighted the noncovalent derivatisation of carbon nanostructures, mainly single wall carbon nanotubes (SWNT) and graphene nanosheets with the prepared Pc conjugates to study the photophysical properties of these supramolecular nanoassemblies. Also, from pyridyl-Pors and ruthenium phthalocyanines (RuPcs) were performed Por-RuPcs arrays via coordination chemistry. The results obtained of the novel supramolecular assemblies showed interesting electron donor-acceptor interactions and might be considered attractive candidates for nanotechnological devices. On the other hand, the amphiphilic phthalocyanine-cyclodextrin (Pc-CD) conjugates were tested in biological trials to assess their ability to inhibit UMUC- 3 human bladder cancer cells. The results obtained demonstrated that these photoactive conjugates are highly phototoxic against human bladder cancer cells and could be applied as promising PDT drugs.
Esta dissertação descreve a síntese e caracterização de diferentes derivados de ftalocianina (Pc), assim como de algumas porfirinas (Pors), para interação supramolecular com diferentes nanoestruturas de carbono para potencial aplicação em nanodispositivos eletrónicos. Igualmente, é também reportado a preparação e avaliação biológica de interessantes conjugados de Pc para a terapia fotodinâmica (PDT) de cancro e para a fotoinativação de microrganismos (PDI). Neste trabalho científico são discutidas as propriedades gerais das Pcs e metodologias sintéticas usadas na sua preparação, bem como algumas das suas importantes aplicações. Os precursores ftalonitrilo foram preparados a partir de ftalonitrilos comerciais por substituições nucleofílicas de grupos -NO2, -Cl ou -F, presentes no núcleo ftalonitrilo, por unidades tiol ou piridilo. As correspondentes Pcs foram preparadas por ciclotetramerização dos ftalonitrilos, previamente sintetizados, na presença de um sal metálico a temperaturas elevadas. Uma segunda estratégia envolveu a pós-funcionalização na periferia do macrociclo da ftalocianina hexadecafluor de zinco(II) com unidades de mercaptopiridina ou ciclodextrina. Os diferentes compostos foram caracterizados estruturalmente por diversas técnicas espectroscópicas, nomeadamente espectroscopia de ressonância magnética nuclear de 1H, 13C e 19F (atendendo à composição elementar de cada estrutura), espectroscopia de absorção e de emissão, e espectrometria de massa. Para estudos fotofísicos específicos foram também usadas a caracterização electroquímica, espectroscopia de femtossegundo e raman, microscopia de transmissão eletrónica e de força atómica. Foi realizado a derivatização não covalente de nanoestruturas de carbono, principalmente nanotubos de carbono de parede simples (SWNT) e nanofolhas de grafeno, com os conjugados de ftalocianina preparados, para dessa forma estudar as propriedades fotofísicas dessas nanoassembleias supramoleculares. Também, a partir de Pors-piridilo e ftalocianinas de ruténio (RuPcs) foram realizadas matrizes de Por-RuPcs via química de coordenação. Os resultados obtidos mostraram interessantes interações eletrónicas doador-aceitador e podem ser considerados candidatos atrativos para diversos dispositivos nanotecnológicos. Por outro lado, os conjugados anfifílicos de ftalocianina-ciclodextrina (Pc-CD) foram testados em ensaios biológicos para avaliar a sua capacidade de inibir células cancerígenas UM-UC-3 da bexiga humana. Os resultados obtidos demonstraram que estes conjugados fotoativos são altamente fototóxicos contra este tipo de células, mostrando-se bastante promissores como agentes em PDT.
Barman, Poulami. „The interaction of peptides with functionalized carbon nanotubes /“. Online version of thesis, 2009. http://hdl.handle.net/1850/8688.
Der volle Inhalt der QuelleCavan, Graeme Patrick. „Interaction of carbon and nitrogen metabolism in Schizosaccharomyces pombe“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259573.
Der volle Inhalt der QuelleJames, Matthew Philip William. „The interaction of electromagnetic radiation with carbon nanotube fibres“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707916.
Der volle Inhalt der QuelleHofmann, Mario. „Synthesis and fluid interaction of ultra long carbon nanotubes“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46606.
Der volle Inhalt der QuelleMIT Barker Library copy printed in pages.
Includes bibliographical references (leaves 49-50).
The successful integration for carbon nanotubes in future electronic applications relies on advances in their synthesis. In this work optimization of growth parameters was conducted to obtain ultra long carbon nanotubes. Their morphology was analyzed by means of different techniques and evidence of the occurrence of nanotube bundles was found. The effect of varying several parameters on the morphology of the obtained nanotubes was investigated and successful growth of ultra long nanotubes was achieved. The settling process, i.e. the sinking of the nanotubes to the substrate, of those nanotubes was investigated by a newly developed in-situ rotation tool and statistical data for their behavior during growth was obtained.
by Mario Hofmann.
S.M.
Ye, Zhou. „Mechanism and the Effect of Microwave-Carbon Nanotube Interaction“. Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4919/.
Der volle Inhalt der QuelleOwens, Angela C. „An experimental study of fluid structure interaction of carbon composites under low velocity impact“. Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FOwens.pdf.
Der volle Inhalt der QuelleThesis Advisor: Kwon, Young W. Second Reader: Didoszak, Jarema M. "December 2009." Description based on title screen as viewed on January 26, 2010. Author(s) subject terms: Composite, Carbon, Low Velocity Impact, Fluid Structure Interaction. Includes bibliographical references (p. 49-50). Also available in print.
Bray, Shirley M. „The interaction between carbon dioxide enrichment and salinity on growth and carbon partitioning in Phaseolus vulgaris L“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/NQ54822.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Carbon interaction"
Crawford, G. B. On the contribution of bubbles and waves to air-sea COb2s flux, with implications for remote sensing. Boulder, Colo: National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1987.
Den vollen Inhalt der Quelle findenDuarte, Pedro. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer Science+Business Media B.V., 2011.
Den vollen Inhalt der Quelle findenK, Bi͡utner Ė. Planetarnyĭ gazoobmen O₂ i CO₂. Leningrad: Gidrometeoizdat, 1986.
Den vollen Inhalt der Quelle findenPark, Geun-Ha. Procedures to create near real-time seasonal air-sea CO₂ flux maps. Miami, Fla: United States Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, 2010.
Den vollen Inhalt der Quelle findenAdams, Jonathan. Vegetation—Climate Interaction: How Plants Make the Global Environment. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007.
Den vollen Inhalt der Quelle findenInternational Symposium CO₂ in the Oceans (2nd 1999 Tsukuba Center of Institutes). Proceedings of the 2nd International Symposium CO₂ in the Oceans: The 12th Global Environment Tsukuba, 18-22 January 1999, Tsukuba Center of Institutes. [Tsukuba, Ibaraki, Japan]: Center for Global Environmental Research, National Institute for Environmental Studies, 1999.
Den vollen Inhalt der Quelle findenCarbon and nutrient fluxes in continental margins: A global synthesis. Berlin: Springer Verlag, 2010.
Den vollen Inhalt der Quelle findenEnting, I. G. Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses. Australia: CSIRO, 1994.
Den vollen Inhalt der Quelle findenKumar, M. Dileep. Biogeochemistry of the North Indian Ocean. New Delhi: Indian National Science Academy, 2006.
Den vollen Inhalt der Quelle findenBorisenkov, Evgeniĭ Panteleĭmonovich. Krugovorot ugleroda i klimat. Moskva: Gidrometeoizdat, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Carbon interaction"
Adams, Jonathan. „Plants and the carbon cycle“. In Vegetation—Climate Interaction, 181–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_7.
Der volle Inhalt der QuellePenco, A., T. Svaldo-Lanero, M. Prato, C. Toccafondi, R. Rolandi, M. Canepa und O. Cavalleri. „Graphite Nanopatterning Through Interaction with Bio-organic Molecules“. In Carbon Nanostructures, 221–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_28.
Der volle Inhalt der QuelleAdams, Jonathan. „The direct carbon dioxide effect on plants“. In Vegetation—Climate Interaction, 221–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_8.
Der volle Inhalt der QuelleBulyarskiy, Sergey, Alexandr S. Basaev, Darya A. Bogdanova und Alexandr Pavlov. „Oxygen Interaction with Electronic Nanotubes“. In Doping of Carbon Nanotubes, 103–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_4.
Der volle Inhalt der QuelleZhao, Rui, und Yong Geng. „Interaction Among Stakeholders Involved in Carbon Labeling Scheme“. In Carbon Labeling Practice, 77–133. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2583-1_3.
Der volle Inhalt der QuelleKumar, P. A., Raghuveer Polisetty und Y. P. Abrol. „Interaction between Carbon and Nitrogen Metabolism“. In Photosynthesis: Photoreactions to Plant Productivity, 339–50. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2708-0_13.
Der volle Inhalt der QuelleSaurov, Alexandr, Sergey Bulyarskiy, Darya A. Bogdanova und Alexandr Pavlov. „Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping“. In Doping of Carbon Nanotubes, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_5.
Der volle Inhalt der QuelleShironosova, G. P., O. L. Gas’kova, G. A. Pal’yanova und V. G. Zimbalist. „Experimental study of gold solubility in hydrothermal solutions with/without carbon dioxide“. In Water-Rock Interaction, 829–31. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-206.
Der volle Inhalt der QuelleLebedeva, I. V., A. A. Knizhnik, A. M. Popov, Yu E. Lozovik und B. V. Potapkin. „Study of Interaction Between Graphene Layers: Fast Diffusion of Graphene Flake and Commensurate-Incommensurate Phase Transition“. In Carbon Nanostructures, 177–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_21.
Der volle Inhalt der QuelleSrinivasan, Sampath, und Ayyappanpillai Ajayaghosh. „Interaction of Carbon Nanotubes and Small Molecules“. In Supramolecular Soft Matter, 381–406. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095331.ch19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Carbon interaction"
Chakraborty, Poulami, Sanjay Kumar, Ram Kishen Fotedar und Nagaiyar Krishnamurthy. „Interaction of α-silicon carbide with lead-lithium eutectic“. In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810028.
Der volle Inhalt der QuelleChakraborty, Himanshu, und Alok Shukla. „Large scale configuration interaction calculations of linear optical absorption of decacene“. In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810072.
Der volle Inhalt der QuelleIkematsu, Kaori, und Siio Itiro. „Carbon copy metaphor“. In OzCHI '17: 29th Australian Conference on Human-Computer Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3152771.3156164.
Der volle Inhalt der QuelleWaters, Ruth A., J. M. Thomas, R. M. Clement und N. R. Ledger. „Comparison of carbon monoxide and carbon dioxide laser-tissue interaction“. In Optics, Electro-Optics, and Laser Applications in Science and Engineering, herausgegeben von Steven L. Jacques. SPIE, 1991. http://dx.doi.org/10.1117/12.44119.
Der volle Inhalt der QuelleSreckovic, Milesa Z., B. Kaludjerovic, S. Bojanic, N. Ivanovic, V. Rajkovic, S. Ristic und Z. Fidanovski. „Laser interaction with carbon-type materials“. In OPTIKA '98: Fifth Congress on Modern Optics, herausgegeben von Gyorgy Akos, Gabor Lupkovics und Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320994.
Der volle Inhalt der QuelleEl-Hajj, H., U. Odi und A. Gupta. „Carbonate reservoir interaction with supercritical carbon dioxide“. In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/iptc-16561-abstract.
Der volle Inhalt der QuelleEl-Hajj, H., U. Odi und A. Gupta. „Carbonate reservoir interaction with supercritical carbon dioxide“. In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/16561-abstract.
Der volle Inhalt der QuelleGorbunov, Andre A., A. Graff, O. Jost und Wolfgang Pompe. „Mechanism of carbon nanotube synthesis by laser ablation“. In Nonresonant Laser-Matter Interaction (NLMI-10), herausgegeben von Mikhail N. Libenson. SPIE, 2001. http://dx.doi.org/10.1117/12.431225.
Der volle Inhalt der QuelleLain-Jong Li, Fuming Chen, Yumeng Shi, Keke Zhang und Xiaochen Dong. „Interaction between fluorene-based polymers and carbon nanotubes/carbon nanotube field-effect transistors“. In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585451.
Der volle Inhalt der QuelleBoroznina, N. P., A. A. Grechko, I. V. Zaporotskova, S. V. Boroznin und P. A. Zaporotskov. „Study of carbon dioxide interaction with modified functional amino group of carbon nanotubes“. In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033060.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Carbon interaction"
Nemat-Nasser, Sia, und Yitzhak Tor. Self Assembly of Carbon Nanotubes by Ionic Charge Interaction. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada478629.
Der volle Inhalt der QuelleMcCarty, J. G. Interaction of carbon and sulfur on metal catalysts. Progress report. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/10118270.
Der volle Inhalt der QuelleMcCarty, J. G., und J. Vajo. Interaction of carbon and sulfur on metal catalysts: Technical progress report. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/10118243.
Der volle Inhalt der QuelleJeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882469.
Der volle Inhalt der QuelleEvanseck, Jeffrey, Jeffry Madura und Jonathan Mathews. Use of Molecular Modeling to Determine the Interaction and Competition of Gases Within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/915749.
Der volle Inhalt der QuelleJeffrey D. Evanseck und Jeffry D. Madura. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/922134.
Der volle Inhalt der QuelleJeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), Mai 2005. http://dx.doi.org/10.2172/841533.
Der volle Inhalt der QuelleJeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), Mai 2004. http://dx.doi.org/10.2172/826305.
Der volle Inhalt der QuelleCseke, Leland. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1325004.
Der volle Inhalt der QuelleLueking, Angela, John Badding und Vinent Crespi. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1228777.
Der volle Inhalt der Quelle