Auswahl der wissenschaftlichen Literatur zum Thema „Carbon interaction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carbon interaction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Carbon interaction"

1

Paryzhak, S. Ya, T. I. Dumych, S. M. Peshkova, E. E. Bila, A. D. Lutsyk, A. Barras, R. Boukherroub, S. Szunerits und R. O. Bilyy. „Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues“. Ukrainian Biochemical Journal 91, Nr. 2 (01.04.2019): 41–50. http://dx.doi.org/10.15407/ubj91.02.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ayala, J. A., W. M. Hess, F. D. Kistler und G. A. Joyce. „Carbon-Black-Elastomer Interaction“. Rubber Chemistry and Technology 64, Nr. 1 (01.03.1991): 19–39. http://dx.doi.org/10.5254/1.3538537.

Der volle Inhalt der Quelle
Annotation:
Abstract A number of different techniques were applied to measure carbon-black-surface reactivity and the level of black-polymer interaction in four different elastomer systems (SBR, IIR, NR, and NBR) representing differences in unsaturation, crystallinity and polarity. Known within-grade surface activity variations were based on partial graphitization of an N121-type carbon black. The surface activity of different black grades was studied as a function of variations in both surface area and DBPA. Direct measurements of carbon-black-surface reactivity were based on hydrogen analysis, SIMS, IGC, and moisture adsorption. In-rubber measurements included bound rubber, SIMS of cut surfaces, and an interaction parameter, σ/η, which is derived from the slope (σ) of the stress-strain curve at low elongations, and (η), the ratio of dynamic modulus (E′) at 1% and 25% DSA. The following trends were observed: 1. The σ/η values provided a good measure of black-polymer interaction in all four polymer systems for either the within-grade or across-grade comparisons. 2. Higher σ/η values were indicated for SBR and NBR, followed by NR and IIR in that order. 3. SBR indicated the greatest sensitivity for bound-rubber measurements in terms of distinguishing within-grade variations in black-polymer interaction, followed by IIR, NR, and NBR in that order. 4. Positive SIMS on dry carbon black indicates the presence of complex hydrocarbon structures suitable for chemical reactivity at the carbon-black surface. 5. SIMS analyses on the dry carbon blacks exhibited intensity variations in the negative hydrocarbon fragments which were in line with the within-grade variations in hydrogen content. 6. SIMS analyses on the cut-rubber compound surfaces showed overall variations in intensity which were proportional to the range and level of the bound-rubber measurements. The most meaningful variations were recorded for SBR and IIR. 7. Heats of adsorption derived from IGC measurements with different adsorbates showed an excellent correlation with black-polymer interaction for the within-grade studies. Measurements across grades did not correlate as well with the in-rubber measurements, but the best results were obtained using styrene as the adsorbate. 8. The within-grade moisture adsorption measurements showed excellent agreement with IGC and the other techniques for the N121 series of heat-treated carbon blacks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bittencourt, C., M. Hecq, A. Felten, J. J. Pireaux, J. Ghijsen, M. P. Felicissimo, P. Rudolf, W. Drube, X. Ke und G. Van Tendeloo. „Platinum–carbon nanotube interaction“. Chemical Physics Letters 462, Nr. 4-6 (September 2008): 260–64. http://dx.doi.org/10.1016/j.cplett.2008.07.082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brown, T. C., und B. S. Haynes. „Interaction of carbon monoxide with carbon and carbon surface oxides“. Energy & Fuels 6, Nr. 2 (März 1992): 154–59. http://dx.doi.org/10.1021/ef00032a006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Soares, Jaqueline S., und Ado Jorio. „Study of Carbon Nanotube-Substrate Interaction“. Journal of Nanotechnology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/512738.

Der volle Inhalt der Quelle
Annotation:
Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

HATTORI, Takeshi, und Miki IWADE. „Carbon Black and Solvent Interaction“. Journal of the Japan Society of Colour Material 93, Nr. 4 (20.04.2020): 116–20. http://dx.doi.org/10.4011/shikizai.93.116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Züttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi und L. Schlapbach. „Hydrogen Interaction with Carbon Nanostructures“. Materials Science Forum 377 (Juni 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/msf.377.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Züttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi und L. Schlapbach. „Hydrogen Interaction with Carbon Nanostructures“. Journal of Metastable and Nanocrystalline Materials 11 (Juni 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/jmnm.11.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Umadevi, Deivasigamani, Swati Panigrahi und Garikapati Narahari Sastry. „Noncovalent Interaction of Carbon Nanostructures“. Accounts of Chemical Research 47, Nr. 8 (17.07.2014): 2574–81. http://dx.doi.org/10.1021/ar500168b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Weigert, F. J. „Interaction of perfluorocarbons with carbon“. Journal of Fluorine Chemistry 65, Nr. 1-2 (November 1993): 67–71. http://dx.doi.org/10.1016/s0022-1139(00)80475-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Carbon interaction"

1

Rahmat, Meysam. „Carbon nanotube - polymer interaction in nanocomposites“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104648.

Der volle Inhalt der Quelle
Annotation:
Carbon nanotube–polymer nanocomposites have been the centre of intense studies for the past few years. With the superior properties of carbon nanotubes and the flexibility of polymers for different applications, extremely high expectations were set for this class of nanocomposites. Modelling studies showed significant potential, but the experimental investigations faced strict challenges to reach the predicted values. One of the main challenges is to obtain the optimum interaction between the nanotubes and the polymer matrix. The interaction influences the dispersion of nanotubes in the polymer and affects the overall properties of the nanocomposite. Therefore, the main objective of this research was to study the carbon nanotube–polymer interaction in nanocomposites. Based on a comprehensive review of the literature, molecular dynamics and atomic force microscopy were selected as the modelling and experimental techniques to study the interaction. In the modelling section, the interfacial properties of a single-walled carbon nanotube–poly(methyl methacrylate) nanocomposite were obtained through a three-phase simulation of a pull-out test. An interfacial binding energy of 0.39 kcal/molÅ2 was obtained from molecular dynamics simulation. On the other hand, in the experimental section, stepwise discretization method was proposed as a novel technique of interaction measurement using atomic force microscopy. Furthermore, a new interaction parameter, called interaction stress, was introduced to evaluate the interaction quality in nanocomposites. The stepwise discretization method was applied to a single-walled carbon nanotube–poly(methyl methacrylate) nanocomposite and a maximum interaction stress of 7 MPa was obtained. The results were, then, applied to classical contact theory and a nanoscale contact theory was developed. Furthermore, the interaction stress data were input to coarse grain simulations to obtain the interfacial properties of the nanocomposites. This new approach benefited from the flexibility of the coarse grain method and the reliability of the experimental data obtained from atomic force microscopy. Based on the results of the coarse grain simulations, the interfacial binding energy of a single-walled carbon nanotube–poly(methyl methacrylate) nanocomposite was estimated as 0.44 kcal/molÅ2. This value was then compared with the interfacial binding energy obtained from molecular dynamics results (i.e., 0.39 kcal/molÅ2). The good agreement between the results of modelling and experimental approaches demonstrated the validity of the work and the robustness of the proposed methods and parameters.
Les nanocomposites avec des polymères renforcés de nanotubes de carbone ont été le centre d'attention de nombreuses études dans les dernières années. Les propriétés supérieures des nanotubes de carbone et la flexibilité des polymères à être utilisés dans de diverses applications ont créé de grandes attentes pour cette classe de nanocomposites. Des études de modélisation ont démontré un fort potentiel pour ces matériaux, cependant la validation expérimentale de ces propriétés prédites reste un défi. Une des principales difficultés est l'obtention d'une interaction optimale entre les nanotubes et la matrice polymère. Cette interaction influence la dispersion des nanotubes dans le polymère et affecte les propriétés globales du nanocomposite. De ce fait, l'objectif principal de ce travail de recherche a été l'étude de l'interaction entre les nanotubes de carbone et le polymère dans les nanocomposites. A partir d'une revue détaillée de la littérature, la méthode de dynamique moléculaire et la microscopie à force atomique ont été choisies comme techniques numériques et expérimentales pour étudier l'interaction. Dans la partie de modélisation, les propriétés d'interface d'un nanotube à paroi simple avec du poly(methyl methacrylate) ont été obtenues à partir d'une simulation d'un test d'arrachement en trois phases. Une énergie de liaison d'interface de 0.39 kcal/molÅ2 a été calculée par la simulation de dynamique moléculaire. Dans la section expérimentale, une méthode de discrétisation par étapes a été proposée en tant que nouvelle technique de mesure de l'interaction par microscopie à force atomique. De plus, un nouvel paramètre d'interaction, appelé contrainte d'interaction, a été introduit pour évaluer la qualité de l'interaction dans les nanocomposites. La méthode de discrétisation par étapes a été utilisée pour le nanocomposite de poly(methyl methacrylate) avec un nanotube de carbone à paroi simple, et une interaction maximale de contrainte de 7 MPa a été obtenue. Les résultats ont été ensuite utilisés pour la théorie classique de contact et une théorie de contact à l'échelle nano. Les données sur les interactions de contraintes ont été aussi utilisées comme entrées pour des simulations de dynamique moléculaire «gros grains» afin d'obtenir les propriétés d'interface des nanocomposites. Cette nouvelle approche bénéficie de la flexibilité de la méthode de dynamique moléculaire «gros grains» et de la fiabilité des données expérimentales obtenues par la microscopie à force atomique. À partir des résultats de la méthode de dynamique moléculaire «gros grains», l'énergie de liaison d'interface d'un nanocomposite de nanotube de carbone–poly(methyl methacrylate) a été estimée à 0.44 kcal/molÅ2. Cette valeur a été comparée à l'énergie de liaison d'interface obtenue par la méthode de dynamique moléculaire (i.e., 0.39 kcal/molÅ2). La bonne corrélation entre les résultats basés sur des approches numériques et expérimentales démontre la validité de cette étude ainsi que la robustesse des méthodes proposées et des paramètres développés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Alam, Md Kawsar. „Interaction of electron beams with carbon nanotubes“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36530.

Der volle Inhalt der Quelle
Annotation:
Carbon nanotubes have great potential for nanoscale devices. Previous studies have shown the prospects of carbon nanotubes as stable, low-voltage electron emitters for vacuum electronic applications. Yet, their electron emission mechanisms are far from being fully understood. For example, it is not completely clear how nanotubes interact with an external electron beam and generate secondary electrons. In addition to its fundamental scientific importance, understanding these mechanisms and properties will facilitate the engineering of nanotube-based devices for applications such as vacuum transistors, electron multipliers, X-ray devices for medical imaging, etc. This thesis presents an experimental and theoretical investigation into the interaction of electron beams with carbon nanotubes. First-principles simulations are carried out to qualitatively analyze the possible direct interaction mechanisms of electron beams with nanotubes. An experimental study of electron yield (total, backscattered and secondary electron yields) from individual nanotubes and collections of nanotubes is reported. The experiments reveal low secondary electron yield from individual nanotubes. A different backscattered electron emission behaviour compared to that in bulk materials is observed in nanotube forests due to unusually high electron penetration range in them. A semi-empirical Monte Carlo model for the interaction of electron beams with collections of nanotubes is presented. Physically-based empirical parameters are derived from the experimental data. The secondary electron yield from individual nanotubes is first investigated in the light of the commonly used energy loss model for solids. Finally, the problems of using the traditional models for individual nanotubes are identified and an approach to modeling secondary and backscattered electron emission from such nanostructures is presented. The experiments and analysis presented in this thesis provide a platform for investigating backscattered and secondary electron emission also from nanostructures other than nanotubes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lourenço, Leandro Miguel de Oliveira. „Phthalocyanines : interaction with carbon structures and as PDT agents“. Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13125.

Der volle Inhalt der Quelle
Annotation:
Doutoramento em Química
This dissertation describes the synthesis and characterization of different phthalocyanine (Pc) derivatives, as well as some porphyrins (Pors), for supramolecular interaction with different carbon nanostructures, to evaluate their potential application in electronic nanodevices. Likewise, it is also reported the preparation and biological evaluation of interesting phthalocyanine conjugates for cancer photodynamic therapy (PDT) and microorganisms photodynamic inactivation (PDI). The phthalonitrile precursors were prepared from commercial phthalonitriles by nucleophilic substitution of -NO2, -Cl, or -F groups, present in the phthalonitrile core, by thiol or pyridyl units. After the synthesis of these phthalonitriles, the corresponding Pcs were prepared by ciclotetramerization using a metallic salt as template at high temperatures. A second strategy involved the postfunctionalization of hexadecafluorophthalocyaninato zinc(II) through the adequate substituents of mercaptopyridine or cyclodextrin units on the macrocycle periphery. The different compounds were structurally characterized by diverse spectroscopic techniques, namely 1H, 13C and 19F nuclear magnetic resonance spectroscopies (attending the elemental composition of each structure); absorption and emission spectroscopy, and mass spectrometry. For the specific photophysical studies were also used electrochemical characterization, femtosecond and raman spectroscopy, transmission electron and atomic force microscopy. It was highlighted the noncovalent derivatisation of carbon nanostructures, mainly single wall carbon nanotubes (SWNT) and graphene nanosheets with the prepared Pc conjugates to study the photophysical properties of these supramolecular nanoassemblies. Also, from pyridyl-Pors and ruthenium phthalocyanines (RuPcs) were performed Por-RuPcs arrays via coordination chemistry. The results obtained of the novel supramolecular assemblies showed interesting electron donor-acceptor interactions and might be considered attractive candidates for nanotechnological devices. On the other hand, the amphiphilic phthalocyanine-cyclodextrin (Pc-CD) conjugates were tested in biological trials to assess their ability to inhibit UMUC- 3 human bladder cancer cells. The results obtained demonstrated that these photoactive conjugates are highly phototoxic against human bladder cancer cells and could be applied as promising PDT drugs.
Esta dissertação descreve a síntese e caracterização de diferentes derivados de ftalocianina (Pc), assim como de algumas porfirinas (Pors), para interação supramolecular com diferentes nanoestruturas de carbono para potencial aplicação em nanodispositivos eletrónicos. Igualmente, é também reportado a preparação e avaliação biológica de interessantes conjugados de Pc para a terapia fotodinâmica (PDT) de cancro e para a fotoinativação de microrganismos (PDI). Neste trabalho científico são discutidas as propriedades gerais das Pcs e metodologias sintéticas usadas na sua preparação, bem como algumas das suas importantes aplicações. Os precursores ftalonitrilo foram preparados a partir de ftalonitrilos comerciais por substituições nucleofílicas de grupos -NO2, -Cl ou -F, presentes no núcleo ftalonitrilo, por unidades tiol ou piridilo. As correspondentes Pcs foram preparadas por ciclotetramerização dos ftalonitrilos, previamente sintetizados, na presença de um sal metálico a temperaturas elevadas. Uma segunda estratégia envolveu a pós-funcionalização na periferia do macrociclo da ftalocianina hexadecafluor de zinco(II) com unidades de mercaptopiridina ou ciclodextrina. Os diferentes compostos foram caracterizados estruturalmente por diversas técnicas espectroscópicas, nomeadamente espectroscopia de ressonância magnética nuclear de 1H, 13C e 19F (atendendo à composição elementar de cada estrutura), espectroscopia de absorção e de emissão, e espectrometria de massa. Para estudos fotofísicos específicos foram também usadas a caracterização electroquímica, espectroscopia de femtossegundo e raman, microscopia de transmissão eletrónica e de força atómica. Foi realizado a derivatização não covalente de nanoestruturas de carbono, principalmente nanotubos de carbono de parede simples (SWNT) e nanofolhas de grafeno, com os conjugados de ftalocianina preparados, para dessa forma estudar as propriedades fotofísicas dessas nanoassembleias supramoleculares. Também, a partir de Pors-piridilo e ftalocianinas de ruténio (RuPcs) foram realizadas matrizes de Por-RuPcs via química de coordenação. Os resultados obtidos mostraram interessantes interações eletrónicas doador-aceitador e podem ser considerados candidatos atrativos para diversos dispositivos nanotecnológicos. Por outro lado, os conjugados anfifílicos de ftalocianina-ciclodextrina (Pc-CD) foram testados em ensaios biológicos para avaliar a sua capacidade de inibir células cancerígenas UM-UC-3 da bexiga humana. Os resultados obtidos demonstraram que estes conjugados fotoativos são altamente fototóxicos contra este tipo de células, mostrando-se bastante promissores como agentes em PDT.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Barman, Poulami. „The interaction of peptides with functionalized carbon nanotubes /“. Online version of thesis, 2009. http://hdl.handle.net/1850/8688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cavan, Graeme Patrick. „Interaction of carbon and nitrogen metabolism in Schizosaccharomyces pombe“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259573.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

James, Matthew Philip William. „The interaction of electromagnetic radiation with carbon nanotube fibres“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hofmann, Mario. „Synthesis and fluid interaction of ultra long carbon nanotubes“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46606.

Der volle Inhalt der Quelle
Annotation:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
MIT Barker Library copy printed in pages.
Includes bibliographical references (leaves 49-50).
The successful integration for carbon nanotubes in future electronic applications relies on advances in their synthesis. In this work optimization of growth parameters was conducted to obtain ultra long carbon nanotubes. Their morphology was analyzed by means of different techniques and evidence of the occurrence of nanotube bundles was found. The effect of varying several parameters on the morphology of the obtained nanotubes was investigated and successful growth of ultra long nanotubes was achieved. The settling process, i.e. the sinking of the nanotubes to the substrate, of those nanotubes was investigated by a newly developed in-situ rotation tool and statistical data for their behavior during growth was obtained.
by Mario Hofmann.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ye, Zhou. „Mechanism and the Effect of Microwave-Carbon Nanotube Interaction“. Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4919/.

Der volle Inhalt der Quelle
Annotation:
A series of experimental results about unusual heating of carbon nanotubes by microwaves is analyzed in this dissertation. Two of vibration types, cantilever type (one end is fixed and the other one end is free), the second type is both ends are fixed, have been studied by other people. A third type of forced vibration of carbon nanotubes under an alternating electromagnetic field is examined in this paper. Heating of carbon nanotubes (CNTs) by microwaves is described in terms of nonlinear dynamics of a vibrating nanotube. Results from the model provide a way to understand several observations that have been made. It is shown that transverse vibrations of CNTs during microwave irradiation can be attributed to transverse parametric resonance, as occurs in the analysis of Melde's experiment on forced longitudinal vibrations of a stretched elastic string. For many kinds of carbon nanotubes (SWNT, DWNT, MWNT, ropes and strands) the resonant parameters are found to be located in an unstable region of the parameter space of Mathieu's equation. Third order wave equations are used to qualitatively describe the effects of phonon-phonon interactions and energy transfer from microwaves to CNTs. This result provides another way to input energy from microwaves to carbon nanotubes besides the usual Joule heating via electron-phonon interaction. This model appears to be the first to point out the role of nonlinear dynamics in the heating of CNTs by microwaves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Owens, Angela C. „An experimental study of fluid structure interaction of carbon composites under low velocity impact“. Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FOwens.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, December 2009.
Thesis Advisor: Kwon, Young W. Second Reader: Didoszak, Jarema M. "December 2009." Description based on title screen as viewed on January 26, 2010. Author(s) subject terms: Composite, Carbon, Low Velocity Impact, Fluid Structure Interaction. Includes bibliographical references (p. 49-50). Also available in print.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bray, Shirley M. „The interaction between carbon dioxide enrichment and salinity on growth and carbon partitioning in Phaseolus vulgaris L“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/NQ54822.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Carbon interaction"

1

Crawford, G. B. On the contribution of bubbles and waves to air-sea COb2s flux, with implications for remote sensing. Boulder, Colo: National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Duarte, Pedro. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer Science+Business Media B.V., 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

K, Bi͡utner Ė. Planetarnyĭ gazoobmen O₂ i CO₂. Leningrad: Gidrometeoizdat, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Park, Geun-Ha. Procedures to create near real-time seasonal air-sea CO₂ flux maps. Miami, Fla: United States Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Adams, Jonathan. Vegetation—Climate Interaction: How Plants Make the Global Environment. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

International Symposium CO₂ in the Oceans (2nd 1999 Tsukuba Center of Institutes). Proceedings of the 2nd International Symposium CO₂ in the Oceans: The 12th Global Environment Tsukuba, 18-22 January 1999, Tsukuba Center of Institutes. [Tsukuba, Ibaraki, Japan]: Center for Global Environmental Research, National Institute for Environmental Studies, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Carbon and nutrient fluxes in continental margins: A global synthesis. Berlin: Springer Verlag, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Enting, I. G. Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses. Australia: CSIRO, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kumar, M. Dileep. Biogeochemistry of the North Indian Ocean. New Delhi: Indian National Science Academy, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Borisenkov, Evgeniĭ Panteleĭmonovich. Krugovorot ugleroda i klimat. Moskva: Gidrometeoizdat, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Carbon interaction"

1

Adams, Jonathan. „Plants and the carbon cycle“. In Vegetation—Climate Interaction, 181–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Penco, A., T. Svaldo-Lanero, M. Prato, C. Toccafondi, R. Rolandi, M. Canepa und O. Cavalleri. „Graphite Nanopatterning Through Interaction with Bio-organic Molecules“. In Carbon Nanostructures, 221–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Adams, Jonathan. „The direct carbon dioxide effect on plants“. In Vegetation—Climate Interaction, 221–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bulyarskiy, Sergey, Alexandr S. Basaev, Darya A. Bogdanova und Alexandr Pavlov. „Oxygen Interaction with Electronic Nanotubes“. In Doping of Carbon Nanotubes, 103–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhao, Rui, und Yong Geng. „Interaction Among Stakeholders Involved in Carbon Labeling Scheme“. In Carbon Labeling Practice, 77–133. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2583-1_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kumar, P. A., Raghuveer Polisetty und Y. P. Abrol. „Interaction between Carbon and Nitrogen Metabolism“. In Photosynthesis: Photoreactions to Plant Productivity, 339–50. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2708-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Saurov, Alexandr, Sergey Bulyarskiy, Darya A. Bogdanova und Alexandr Pavlov. „Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping“. In Doping of Carbon Nanotubes, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shironosova, G. P., O. L. Gas’kova, G. A. Pal’yanova und V. G. Zimbalist. „Experimental study of gold solubility in hydrothermal solutions with/without carbon dioxide“. In Water-Rock Interaction, 829–31. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lebedeva, I. V., A. A. Knizhnik, A. M. Popov, Yu E. Lozovik und B. V. Potapkin. „Study of Interaction Between Graphene Layers: Fast Diffusion of Graphene Flake and Commensurate-Incommensurate Phase Transition“. In Carbon Nanostructures, 177–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Srinivasan, Sampath, und Ayyappanpillai Ajayaghosh. „Interaction of Carbon Nanotubes and Small Molecules“. In Supramolecular Soft Matter, 381–406. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095331.ch19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Carbon interaction"

1

Chakraborty, Poulami, Sanjay Kumar, Ram Kishen Fotedar und Nagaiyar Krishnamurthy. „Interaction of α-silicon carbide with lead-lithium eutectic“. In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chakraborty, Himanshu, und Alok Shukla. „Large scale configuration interaction calculations of linear optical absorption of decacene“. In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ikematsu, Kaori, und Siio Itiro. „Carbon copy metaphor“. In OzCHI '17: 29th Australian Conference on Human-Computer Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3152771.3156164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Waters, Ruth A., J. M. Thomas, R. M. Clement und N. R. Ledger. „Comparison of carbon monoxide and carbon dioxide laser-tissue interaction“. In Optics, Electro-Optics, and Laser Applications in Science and Engineering, herausgegeben von Steven L. Jacques. SPIE, 1991. http://dx.doi.org/10.1117/12.44119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sreckovic, Milesa Z., B. Kaludjerovic, S. Bojanic, N. Ivanovic, V. Rajkovic, S. Ristic und Z. Fidanovski. „Laser interaction with carbon-type materials“. In OPTIKA '98: Fifth Congress on Modern Optics, herausgegeben von Gyorgy Akos, Gabor Lupkovics und Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

El-Hajj, H., U. Odi und A. Gupta. „Carbonate reservoir interaction with supercritical carbon dioxide“. In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/iptc-16561-abstract.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

El-Hajj, H., U. Odi und A. Gupta. „Carbonate reservoir interaction with supercritical carbon dioxide“. In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/16561-abstract.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gorbunov, Andre A., A. Graff, O. Jost und Wolfgang Pompe. „Mechanism of carbon nanotube synthesis by laser ablation“. In Nonresonant Laser-Matter Interaction (NLMI-10), herausgegeben von Mikhail N. Libenson. SPIE, 2001. http://dx.doi.org/10.1117/12.431225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lain-Jong Li, Fuming Chen, Yumeng Shi, Keke Zhang und Xiaochen Dong. „Interaction between fluorene-based polymers and carbon nanotubes/carbon nanotube field-effect transistors“. In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Boroznina, N. P., A. A. Grechko, I. V. Zaporotskova, S. V. Boroznin und P. A. Zaporotskov. „Study of carbon dioxide interaction with modified functional amino group of carbon nanotubes“. In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Carbon interaction"

1

Nemat-Nasser, Sia, und Yitzhak Tor. Self Assembly of Carbon Nanotubes by Ionic Charge Interaction. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada478629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McCarty, J. G. Interaction of carbon and sulfur on metal catalysts. Progress report. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/10118270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McCarty, J. G., und J. Vajo. Interaction of carbon and sulfur on metal catalysts: Technical progress report. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/10118243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Evanseck, Jeffrey, Jeffry Madura und Jonathan Mathews. Use of Molecular Modeling to Determine the Interaction and Competition of Gases Within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/915749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jeffrey D. Evanseck und Jeffry D. Madura. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/922134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), Mai 2005. http://dx.doi.org/10.2172/841533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jeffrey D. Evanseck, Jeffry D. Madura und Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), Mai 2004. http://dx.doi.org/10.2172/826305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cseke, Leland. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1325004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lueking, Angela, John Badding und Vinent Crespi. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1228777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie