Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Carbon dioxide (CO2)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carbon dioxide (CO2)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Carbon dioxide (CO2)"
Schunemann, H. J., und R. A. Klocke. „Influence of carbon dioxide kinetics on pulmonary carbon dioxide exchange“. Journal of Applied Physiology 74, Nr. 2 (01.02.1993): 715–21. http://dx.doi.org/10.1152/jappl.1993.74.2.715.
Der volle Inhalt der QuellePetroianu, Georg, Wolfgang Maleck, Wolfgang Bergler und Roderich Ruefer. „Carbon Monoxide and Nonquantitative Carbon Dioxide Detection“. Prehospital and Disaster Medicine 11, Nr. 4 (Dezember 1996): 276–79. http://dx.doi.org/10.1017/s1049023x00043120.
Der volle Inhalt der QuelleHe, Liang-Nian, Jin-Quan Wang und Jing-Lun Wang. „Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide“. Pure and Applied Chemistry 81, Nr. 11 (31.10.2009): 2069–80. http://dx.doi.org/10.1351/pac-con-08-10-22.
Der volle Inhalt der QuelleKhandaker, Tasmina, Muhammad Sarwar Hossain, Palash Kumar Dhar, Md Saifur Rahman, Md Ashraf Hossain und Mohammad Boshir Ahmed. „Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture“. Processes 8, Nr. 6 (30.05.2020): 654. http://dx.doi.org/10.3390/pr8060654.
Der volle Inhalt der QuelleGuo, Jiaqi, Yijia Hu und Yifan Zhao. „The Development of Carbon Dioxide Captures and Biochemical Transformation of Carbon Dioxide“. Highlights in Science, Engineering and Technology 6 (27.07.2022): 372–81. http://dx.doi.org/10.54097/hset.v6i.1034.
Der volle Inhalt der QuelleSima, Sergiu, und Catinca Secuianu. „The Effect of Functional Groups on the Phase Behavior of Carbon Dioxide Binaries and Their Role in CCS“. Molecules 26, Nr. 12 (18.06.2021): 3733. http://dx.doi.org/10.3390/molecules26123733.
Der volle Inhalt der QuelleLanjewar, Aditya Anand. „CO2 Sequestration“. Research and Analysis Journal 4, Nr. 10 (09.10.2021): 01. http://dx.doi.org/10.18535/raj/v4i10.01.
Der volle Inhalt der QuellePopa, Teodor, und Ovidiu Sorin Cupsa. „Carbon Dioxide Transport and Storage“. Advanced Materials Research 1036 (Oktober 2014): 975–80. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.975.
Der volle Inhalt der QuelleBack, Martin R., James G. Caridi, Irvin F. Hawkins und James M. Seeger. „ANGIOGRAPHY WITH CARBON DIOXIDE (CO2)“. Surgical Clinics of North America 78, Nr. 4 (August 1998): 575–91. http://dx.doi.org/10.1016/s0039-6109(05)70335-2.
Der volle Inhalt der QuelleEhret, David L., und Peter A. Jolliffe. „Photosynthetic carbon dioxide exchange of bean plants grown at elevated carbon dioxide concentrations“. Canadian Journal of Botany 63, Nr. 11 (01.11.1985): 2026–30. http://dx.doi.org/10.1139/b85-283.
Der volle Inhalt der QuelleDissertationen zum Thema "Carbon dioxide (CO2)"
NGUYEN, TUYET. „Carbon dioxide in ice rink refrigeration“. Thesis, KTH, Tillämpad termodynamik och kylteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118099.
Der volle Inhalt der QuelleMurray, Paul R. „High peak power, pulsed, planar waveguide CO2 lasers“. Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1225.
Der volle Inhalt der QuelleDębek, Radoslaw. „Novel catalysts for chemical CO2 utilization“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066215/document.
Der volle Inhalt der QuelleThe growing emissions of carbon dioxide forced implementation of different CO2 emissions reduction strategies, which may be divided into two main groups: (i) carbon capture and storage (CCS) and (ii) carbon capture and utilization (CCU) technologies. The latter approach allows to recycle CO2. One of the processes that converts CO2 into added-value products is dry reforming of methane (DRM). The DRM process has not yet been commercialized due to the high endothermicity of the reaction and lack of cheap, active and stable catalysts.The materials which have beneficial properties in DRM reaction and may include desired catalysts components i.e. Ni, MgO and Al2O3 are hydrotalcites. The main goal of this PhD thesis was to evaluate catalytic performance of different hydrotalcite-based catalytic systems containing nickel in methane dry reforming process. This PhD was divided into three parts: (i) the comparison of the influence of nickel introduction into HTs-based catalytic system, (ii) the evaluation of wide range of nickel content in hydrotalcite brucite-like layers on materials catalytic properties and (iii) the evaluation of the effect of Ce and/or Zr promoters. In order to address these issues a number of different hydrotalcite-based catalysts was synthesized by co-precipitation. The physico-chemical properties of the prepared materials were evaluated by means of elemental analysis (XRF or ICP-MS), XRD, FTIR, low temperature N2 sorption, H2-TPR, CO2-TPD, TEM, SEM and TG experiments. The materials were subsequently tested in the DRM reaction. Most of catalytic tests were carried out at 550°C, but higher temperatures (650 and 750°C) were also studied
Momin, Farhana. „Reaction of sulfur dioxide (SO2) with reversible ionic liquids (RevILs) for carbon dioxide (CO2) capture“. Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47525.
Der volle Inhalt der QuelleDingilian, Kayane Kohar. „Homogeneous Nucleation of Carbon Dioxide (CO2) in Supersonic Nozzles“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607019789125519.
Der volle Inhalt der QuelleMarszewska, Jowita E. „Development of microporosity in carbons for carbon dioxide adsorption“. Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492043634249216.
Der volle Inhalt der QuelleGonzález, Fabra Joan. „Computational Design of Catalysts for Carbon Dioxide Recycling“. Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/664728.
Der volle Inhalt der QuelleLa utilización del dióxido de carbono como sustrato se ha convertido en una popular estrategia desde una perspectiva ambiental y económica para mitigar las emisiones de CO2 a la atmósfera y, al mismo tiempo, reducir la dependencia del petróleo para proporcionar sustratos con carbono. La activación del dióxido de carbono es un proceso complicado debido a su estabilidad. El diseño de nuevos catalizadores es una tarea compleja que requiere la combinación de técnicas experimentales y teóricas. Una de estas es la modelización molecular, que permite describir detalladamente el sistema y comprender cómo se comporta, o cómo tiene lugar un mecanismo de reacción. La combinación de dos factores, como el aumento de la potencia computacional y la mejora de la eficiencia de los algoritmos, nos permite estudiar grandes sistemas con un nivel razonable de precisión, imitar las condiciones experimentales y, en consecuencia, obtener información crucial. En esta Tesis estudiamos computacionalmente varias reacciones en las que se usa dióxido de carbono como sustrato. Describimos detalladamente el mecanismo de reacción teniendo en cuenta los resultados experimentales proporcionados por nuestros colaboradores. Nuestros resultados contribuyen a comprender mejor cómo funcionan las reacciones de fijación de CO2 y, en consecuencia, puede ayudar en el diseño racional de nuevos y más activos catalizadores para reacciones que involucran CO2 o sustratos similares.
The utilization of carbon dioxide as chemical substrate has become a popular strategy from an environmental and economic perspective to mitigate CO2 emissions to the atmosphere and, at the same time, reduce the petroleum dependency to provide carbon based substrates. The activation of carbon dioxide is not a straightforward process. The design of new catalysts is a complex task that requires the combination of several experimental and theoretical techniques. One of the most relevant is molecular modelling, which allow to describe the system in detail and to understand how the system behaves or how a reaction mechanism takes place. Nowadays, the combination of two factors, being the increase of the computational power and the improved efficiency of the theoretical algorithms, enable computational chemists to study large systems at a reasonable level of accuracy, to mimic the experimental conditions, and consequently, obtain crucial information on the studied system. In this Thesis we studied computationally several reactions where carbon dioxide was used as substrate. We described in detail the reaction mechanism for all cases, taking into consideration the experimental results provided by our collaborators. The results collected in this Thesis contribute to understand better how important CO2 fixation reactions work and consequently, these results may help in the rational design of new and more active catalysts for this type of reactions involving CO2 or substrates of similar properties.
Saada, Rim. „Catalytic conversion of carbon dioxide (CO2) into value added chemicals“. Thesis, London South Bank University, 2015. http://researchopen.lsbu.ac.uk/1649/.
Der volle Inhalt der QuelleErlandsson, Jennifer, und Fredrik Tannoury. „Climate Footprint on Transportation and Storage of Carbon Dioxide (CO2)“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281757.
Der volle Inhalt der QuelleDagens samhälle står inför avsevärda miljömässiga utmaningar, inte minst då mängden växthusgaser (GHG) i atmosfären kommer behöva reduceras drastiskt för att undvika två graders uppvärmning. Bio-energy with carbon capture and storage (BECCS) är en teknologi med potential att avlägsna koldioxid (CO2) inte bara från nya utsläpp, utan även i bästa fall från atmosfären. I det specifika fall som denna rapport tittar närmare på, förbränns biomassa för att skapa fjärrvärme, men istället för att CO2 släpps ut i luften så fångas den upp och komprimeras till flytande form. Därefter kan CO2 transporteras till en injektionsanläggning för att slutligen pumpas ner i en geologiskt lämplig berggrund. Denna process kan resultera i negativa utsläpp om mer CO2 lagras än vad processen skapar och släpper ut. Målet med detta kandidatexamensarbete är att undersöka energianvändningen och läckaget av CO2 under förvätskningen, den kortsiktiga lagringen, transporten samt den långsiktiga lagringen av CO2. Kandidatexamensarbetet är framförallt baserat på data insamlad i form av en litteraturstudie. Denna data har även kompletterats med data från flertalet intervjuer med forskare och anställda på företag som arbetar med BECCS. Flera antaganden har varit nödvändiga då det i dagsläget finns en brist på information angående energianvändningen och läckaget av CO2 i processens delsteg. Energianvändningen för injektionen av CO2 förblir okänd då det inte fanns någon relevant information att tillgå. Då läckaget visade sig vara försumbart eller noll i flera delsteg, utgör energianvändningen en signifikant andel av de totala utsläppen. De största utsläppen av CO2 inom ramen för BECCS processen orsakas därför av förvätskningsprocessen och transporten av CO2 då dessa delar är mest energikrävande. Resultatet av kandidatexamensarbetet kan sammanfattas i tre scenarion, ett lågt scenario, ett median scenario och ett högt scenario. Slutsatsen var att samtliga inkluderade steg av BECCS resulterar i ett utsläpp mellan 49-58 kg koldioxidekvivalenter (CO2e) per ton CO2 som lagras. För att kunna kvantifiera den totala klimatpåverkan av BECCS finns ett behov av ytterligare studier som tar hänsyn till alla delsteg under processen.
Kilpatrick, Andrew David. „Fluid-mineral-CO2 interactions during geological storage of carbon dioxide“. Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8889/.
Der volle Inhalt der QuelleBücher zum Thema "Carbon dioxide (CO2)"
Agency, International Energy. CO2 emissions from fuel combustion =: Émissions de CO2 dues a la combustion d'énérgie. 2. Aufl. Paris: OECD/IEA, 2004.
Den vollen Inhalt der Quelle findenAgency, International Energy. CO2 emissions from fuel combustion =: Émissions de CO2 dues a la combustion d'énérgie. 2. Aufl. Paris: OECD/IEA, 2003.
Den vollen Inhalt der Quelle findenAgency, International Energy. CO2 emissions from fuel combustion =: Emissions de CO2 dues a la combustion d'énergie. 2. Aufl. Paris: OECD, 2000.
Den vollen Inhalt der Quelle findenViöl, Wolfgang. Gütegeschaltete Niederdruck-CO2-Laser. Berlin: Köster, 1994.
Den vollen Inhalt der Quelle findenCO2 enrichment in the greenhouse: Principles and practice. Portland, Or: Timber Press, 1988.
Den vollen Inhalt der Quelle findenCenian, Adam. Physical processes in the CO2-lasers media. Gdańsk: Wydawn. Instytutu Maszyn Przepływowych Polskiej Akademii Nauk, 2006.
Den vollen Inhalt der Quelle findenSugimoto, Hiroyuki. A method forestimating the sea-air CO2 flux in the Pacific Ocean. Tsukuba-shi: Meteorological Research Institute, 2012.
Den vollen Inhalt der Quelle findenDevelopments and innovation in carbon dioxide (CO2) capture and storage technology. Boca Raton, Fla: CRC Press, 2010.
Den vollen Inhalt der Quelle findenOffenhauser, Friedrich. Limits to the modulation of high power CO2 lasers. Koln: DFVLR, 1986.
Den vollen Inhalt der Quelle findenPembina cardium CO2 monitoring pilot: A CO2-EOR project, Alberta, Canada : final report. Sherwood Park, Alta: Geoscience Publishing, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Carbon dioxide (CO2)"
Flammer, Josef, Maneli Mozaffarieh und Hans Bebie. „Carbon Dioxide (CO2)“. In Basic Sciences in Ophthalmology, 139–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32261-7_11.
Der volle Inhalt der QuelleAresta, Michele, und Angela Dibenedetto. „The CO2 Revolution“. In The Carbon Dioxide Revolution, 219–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1_12.
Der volle Inhalt der QuelleHirota, E., K. Kuchitsu, T. Steimle, J. Vogt und N. Vogt. „78 CO2 Carbon dioxide“. In Molecules Containing No Carbon Atoms and Molecules Containing One or Two Carbon Atoms, 311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-540-70614-4_279.
Der volle Inhalt der QuelleStierstadt, Klaus. „The Carbon Dioxide CO2“. In essentials, 11–13. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38313-8_3.
Der volle Inhalt der QuelleHu, Boxun, und Steven L. Suib. „Synthesis of Useful Compounds from CO2“. In Green Carbon Dioxide, 51–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118831922.ch3.
Der volle Inhalt der QuelleClark, Ezra L., und Alexis T. Bell. „Chapter 3. Heterogeneous Electrochemical CO2 Reduction“. In Carbon Dioxide Electrochemistry, 98–150. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788015844-00098.
Der volle Inhalt der QuelleMajchrzak-Kucęba, Izabela. „CO2“. In The Carbon Chain in Carbon Dioxide Industrial Utilization Technologies, 17–35. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003336587-2.
Der volle Inhalt der QuelleAresta, Michele, und Angela Dibenedetto. „Use of CO2 as Technical Fluid (Technological Uses of CO2)“. In The Carbon Dioxide Revolution, 123–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1_8.
Der volle Inhalt der QuelleAresta, Michele, und Angela Dibenedetto. „Solar Chemistry and CO2 Conversion“. In The Carbon Dioxide Revolution, 177–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1_10.
Der volle Inhalt der QuelleAresta, Michele, und Angela Dibenedetto. „Reduction of the CO2 Production“. In The Carbon Dioxide Revolution, 45–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Carbon dioxide (CO2)"
Freed, Charles. „Ultrastable Carbon Dioxide (CO2) Lasers“. In Cambridge Symposium-Fiber/LASE '86, herausgegeben von Evan P. Chicklis und Daniel W. Trainor. SPIE, 1987. http://dx.doi.org/10.1117/12.937274.
Der volle Inhalt der QuelleHovorka, Susan. „Monitoring CO2 EOR Projects To Document Storage Permanence“. In ACI’s 4th Carbon Dioxide Utilization Conference San Antonio, TX February 2015. US DOE, 2015. http://dx.doi.org/10.2172/1749868.
Der volle Inhalt der QuelleTang, Ying, Sharad Yedave, Oleg Byl, Joseph Despres, Eric Tien, Steve Bishop und Joseph Sweeney. „Carbon Implantation Performance Improvement by Mixing Carbon Monoxide (CO) with Carbonyl Fluoride (COF2) and Carbon Dioxide (CO2)“. In 2016 21st International Conference on Ion Implantation Technology (IIT). IEEE, 2016. http://dx.doi.org/10.1109/iit.2016.7882851.
Der volle Inhalt der QuelleBesua, C. E. „Effects of Impurities on Carbon Dioxide Storage Processes“. In Second EAGE CO2 Geological Storage Workshop 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.155.8601.
Der volle Inhalt der QuelleGomez, J. L., und C. L. Ravazzoli. „Modelling the Reflectivity of a Carbon Dioxide Transition Zone“. In Third EAGE CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143829.
Der volle Inhalt der QuelleJeng, F. F., J. F. Lewis, J. C. Graf und S. LaFuse. „CO2 Compressor Requirements for Integration of Space Station Carbon Dioxide Removal and Carbon Dioxide Reduction Assemblies“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2195.
Der volle Inhalt der QuelleBae, Seong Jun, Yoonhan Ahn, Jekyoung Lee und Jeong Ik Lee. „Hybrid System of Supercritical Carbon Dioxide Brayton Cycle and Carbon Dioxide Rankine Cycle Combined Fuel Cell“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25238.
Der volle Inhalt der QuelleAhmad, Mansor, Norhafizah Mohamed und Kazuo Nakayama. „Carbon Dioxide (CO2) Distribution in the Malay Basin, Malaysia“. In PGCE 2005. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.257.4.
Der volle Inhalt der QuelleZakariasen, Kenneth, Joseph Barron und Thomas Boran. „Carbon dioxide (CO2) laser effects on dental hard tissues“. In ICALEO® ‘88: Proceedings of the Laser Research in Medicine, Dentistry & Surgery Conference. Laser Institute of America, 1988. http://dx.doi.org/10.2351/1.5057954.
Der volle Inhalt der QuelleGoh, C. C., L. M. Kamarudin, S. Shukri, N. S. Abdullah und A. Zakaria. „Monitoring of carbon dioxide (CO2) accumulation in vehicle cabin“. In 2016 3rd International Conference on Electronic Design (ICED). IEEE, 2016. http://dx.doi.org/10.1109/iced.2016.7804682.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Carbon dioxide (CO2)"
Iota, V., Z. Jenei, J. Klepeis, W. Evans und C. Yoo. Pressure Induced Bonding Changes in Carbon Dioxide: Six Fold Coordinated CO2. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/926013.
Der volle Inhalt der QuelleJudd, Kathleen S., Angela R. Kora, Steve A. Shankle und Kimberly M. Fowler. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory. Office of Scientific and Technical Information (OSTI), Juni 2009. http://dx.doi.org/10.2172/967004.
Der volle Inhalt der QuelleAuthor, Not Given. Hydrogenation of Clean Carbon Monoxide (CO) and Carbon Dioxide (CO2) Gas Streams to Higher Molecular Weight Alcohols. Office of Scientific and Technical Information (OSTI), Februar 2012. http://dx.doi.org/10.2172/1035373.
Der volle Inhalt der QuelleLindquist, W. Brent. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers. Office of Scientific and Technical Information (OSTI), März 2009. http://dx.doi.org/10.2172/948548.
Der volle Inhalt der QuelleHoward, William R., Brian Wong, Michelle Okolica, Kimberly S. Bynum und R. A. James. The Prenatal Development Effects of Carbon Dioxide (CO2) Exposure in Rats (Rattus Norvegicus). Fort Belvoir, VA: Defense Technical Information Center, Oktober 2012. http://dx.doi.org/10.21236/ada583166.
Der volle Inhalt der QuellePeters, Catherine A. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers. Office of Scientific and Technical Information (OSTI), Februar 2013. http://dx.doi.org/10.2172/1064444.
Der volle Inhalt der QuelleSun, Xiaolei, und Nancy T. Rink. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1012555.
Der volle Inhalt der QuelleRuiz, Pauline, Achim Raschka, Pia Skoczinski, Jan Ravenstijn und Michael Carus. Carbon Dioxide (CO2) as Chemical Feedstock for Polymers – Technologies, Polymers, Developers and Producers. Nova-Institut GmbH, Januar 2021. http://dx.doi.org/10.52548/prwk5546.
Der volle Inhalt der QuelleHancu, Dan. Large Pilot-Scale Carbon Dioxide (CO2) Capture Project Using Aminosilicone Solvent.Final Scientific/Technical Report. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1414342.
Der volle Inhalt der QuelleBansel, Prateek, Rubal Dua, Rico Krueger und Daniel Graham. Are Consumers Myopic About Future Fuel Costs? Insights from the Indian two-wheeler market. King Abdullah Petroleum Studies and Research Center, August 2021. http://dx.doi.org/10.30573/ks--2021-dp13.
Der volle Inhalt der Quelle