Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Car-Vst“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Car-Vst" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Car-Vst"
Cruz, Conrad Russell Y., Kenneth P. Micklethwaite, Barbara Savoldo, Carlos A. Ramos, Sharon Lam, Stephanie Ku, Oumar Diouf et al. „Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study“. Blood 122, Nr. 17 (24.10.2013): 2965–73. http://dx.doi.org/10.1182/blood-2013-06-506741.
Der volle Inhalt der QuelleCruz, Conrad Russell Y., Kenneth P. Micklethwaite, Barbara Savoldo, Carlos A. Ramos, Sharon Lam, Stephanie Ku, Oumar Diouf et al. „Infusion Of Donor-Derived CD19-Redirected-Virus-Specific T Cells For B-Cell Malignancies Relapsed After Allogeneic Stem Cell Transplant: A Phase I Study“. Blood 122, Nr. 21 (15.11.2013): 152. http://dx.doi.org/10.1182/blood.v122.21.152.152.
Der volle Inhalt der QuelleMakawita, Shalini, Jerry M. Gibbs, Dustin R. McFadden, Caroline Porter, Amanda Rosewell Shaw, Catherine Robertson, Mae Louise Woods et al. „Binary oncolytic adenovirus in combination with HER2-specific autologous CAR VST for treatment of advanced HER2-positive solid tumors (VISTA).“ Journal of Clinical Oncology 42, Nr. 16_suppl (01.06.2024): TPS2679. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.tps2679.
Der volle Inhalt der QuelleMehra, Vedika, Jyoti Bikram Chhetri, Samira Ali und Claire Roddie. „The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics“. Biology 12, Nr. 11 (11.11.2023): 1419. http://dx.doi.org/10.3390/biology12111419.
Der volle Inhalt der QuelleGaberan, Philippe. „Car « je » n'est pas une île“. VST - Vie sociale et traitements 115, Nr. 3 (2012): 38. http://dx.doi.org/10.3917/vst.115.0038.
Der volle Inhalt der QuellePoussin, Jonathan. „Car il s'agit de vivre, naturellement...“ VST - Vie sociale et traitements 115, Nr. 3 (2012): 67. http://dx.doi.org/10.3917/vst.115.0067.
Der volle Inhalt der QuelleLallemand, Damien. „La désobéissance clinique“. VST - Vie sociale et traitements 164, Nr. 4 (13.11.2024): 83–88. http://dx.doi.org/10.3917/vst.164.0083.
Der volle Inhalt der QuelleSurjous, Luc. „Liberté et soin chez Georges Canguilhem“. VST - Vie sociale et traitements 65, Nr. 2 (27.02.2025): 79–84. https://doi.org/10.3917/vst.165.0079.
Der volle Inhalt der QuelleGwenaël, C., P. Rodney, M. Antoine und C. Gwenaël. „Mon rêve, travailler, rencontrer du monde, voyager“. VST - Vie sociale et traitements 65, Nr. 2 (27.02.2025): 61–64. https://doi.org/10.3917/vst.165.0061.
Der volle Inhalt der QuelleГреков, М. А., С. В. Елагин, Г. Л. Козинец, В. Н. Чечевичкин, Л. В. Леонов, А. И. Клоков, А. В. Чечевичкин und Л. А. Якунин. „Test operation of a two-stage plant based on FOPS® filters for the enhanced treatment of surface runoff“. Vodosnabzhenie i sanitarnaia tehnika, Nr. 4 (15.04.2022): 44–50. http://dx.doi.org/10.35776/vst.2022.04.06.
Der volle Inhalt der QuelleDissertationen zum Thema "Car-Vst"
Wang, Valentine. „Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection“. Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Der volle Inhalt der QuelleCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease