Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Caputo derivatives“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Caputo derivatives" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Caputo derivatives"
Li, Changpin, Deliang Qian und YangQuan Chen. „On Riemann-Liouville and Caputo Derivatives“. Discrete Dynamics in Nature and Society 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/562494.
Der volle Inhalt der QuelleOliveira, Daniela S., und Edmundo Capelas de Oliveira. „On a Caputo-type fractional derivative“. Advances in Pure and Applied Mathematics 10, Nr. 2 (01.04.2019): 81–91. http://dx.doi.org/10.1515/apam-2017-0068.
Der volle Inhalt der QuelleRosales García, J. Juan, J. David Filoteo und Andrés González. „A comparative analysis of the RC circuit with local and non-local fractional derivatives“. Revista Mexicana de Física 64, Nr. 6 (31.10.2018): 647. http://dx.doi.org/10.31349/revmexfis.64.647.
Der volle Inhalt der QuelleDiethelm, Kai, Roberto Garrappa, Andrea Giusti und Martin Stynes. „Why fractional derivatives with nonsingular kernels should not be used“. Fractional Calculus and Applied Analysis 23, Nr. 3 (25.06.2020): 610–34. http://dx.doi.org/10.1515/fca-2020-0032.
Der volle Inhalt der QuelleBaleanu, Dumitru, Bahram Agheli und Maysaa Mohamed Al Qurashi. „Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives“. Advances in Mechanical Engineering 8, Nr. 12 (Dezember 2016): 168781401668330. http://dx.doi.org/10.1177/1687814016683305.
Der volle Inhalt der QuelleFeng, Xue, Baolin Feng, Ghulam Farid, Sidra Bibi, Qi Xiaoyan und Ze Wu. „Caputo Fractional Derivative Hadamard Inequalities for Stronglym-Convex Functions“. Journal of Function Spaces 2021 (21.04.2021): 1–11. http://dx.doi.org/10.1155/2021/6642655.
Der volle Inhalt der QuelleDoungmo Goufo, Emile Franc, und Sunil Kumar. „Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities“. Mathematical Problems in Engineering 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/4609834.
Der volle Inhalt der QuelleAbboubakar, Hamadjam, Pushpendra Kumar, Vedat Suat Erturk und Anoop Kumar. „A mathematical study of a tuberculosis model with fractional derivatives“. International Journal of Modeling, Simulation, and Scientific Computing 12, Nr. 04 (26.03.2021): 2150037. http://dx.doi.org/10.1142/s1793962321500379.
Der volle Inhalt der QuelleKhalighi, Moein, Leila Eftekhari, Soleiman Hosseinpour und Leo Lahti. „Three-Species Lotka-Volterra Model with Respect to Caputo and Caputo-Fabrizio Fractional Operators“. Symmetry 13, Nr. 3 (25.02.2021): 368. http://dx.doi.org/10.3390/sym13030368.
Der volle Inhalt der QuelleSene, Ndolane, und José Francisco Gómez Aguilar. „Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives“. Fractal and Fractional 3, Nr. 3 (07.07.2019): 39. http://dx.doi.org/10.3390/fractalfract3030039.
Der volle Inhalt der QuelleDissertationen zum Thema "Caputo derivatives"
Oti, Vincent Bediako. „Numerické metody pro řešení počátečních úloh zlomkových diferenciálních rovnic“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445462.
Der volle Inhalt der QuelleTeodoro, Graziane Sales 1990. „Cálculo fracionário e as funções de Mittag-Leffler“. [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306995.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T12:52:57Z (GMT). No. of bitstreams: 1 Teodoro_GrazianeSales_M.pdf: 8150080 bytes, checksum: 07ef5ddebc25d941750b2dee59bd4022 (MD5) Previous issue date: 2014
Resumo: O cálculo fracionário, nomenclatura utilizada para cálculo de ordem não inteira, tem se mostrado importante e, em muitos casos, imprescindível na discussão de problemas advindos de diversas áreas da ciência, como na matemática, física, engenharia, economia e em muitos outros campos. Neste contexto, abordamos a integral fracionária e as derivadas fracionárias, segundo Caputo e segundo Riemann-Liouville. Dentre as funções relacionadas ao cálculo fracionário, uma das mais importantes é a função de Mittag-Leffler, surgindo naturalmente na solução de várias equações diferenciais fracionárias com coeficientes constantes. Tendo em vista a importância dessa função, a clássica função de Mittag-Leffler e algumas de suas várias generalizações são apresentadas neste trabalho. Na aplicação resolvemos a equação diferencial associada ao problema do oscilador harmônico fracionário, utilizando a transformada de Laplace e a derivada fracionária segundo Caputo
Abstract: The fractional calculus, which is the nomenclature used to the non-integer order calculus, has important applications due to its direct involvement in problem resolution and discussion in many fields, such as mathematics, physics, engineering, economy, applied sciences and many others. In this sense, we studied the fractional integral and fractional derivates: one proposed by Caputo and the other by Riemann-Liouville. Among the fractional calculus's functions, one of most important is the Mittag-Leffler function. This function naturally occurs as the solution for fractional order differential equations with constant coeficients. Due to the importance of the Mittag-Leffler functions, various properties and generalizations are presented in this dissertation. We also presented an application in fractional calculus, in which we solved the differential equation associated the with fractional harmonic oscillator. To solve this fractional oscillator equation, we used the Laplace transform and Caputo fractional derivate
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Oliveira, Daniela dos Santos de 1990. „Derivada fracionária e as funções de Mittag-Leffler“. [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306994.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T00:53:38Z (GMT). No. of bitstreams: 1 Oliveira_DanieladosSantosde_M.pdf: 3702602 bytes, checksum: c0b05792ff3ac3c5bdd5fad1b7586dd5 (MD5) Previous issue date: 2014
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama incompleta e erro. Abordamos, também, a integração fracionária que se faz necessária para introduzir o conceito de derivação fracionária. Duas formulações para a derivada fracionária são estudadas, as formulações proposta por Riemann-Liouville e por Caputo. Investigamos quais regras clássicas de derivação são estendidas para estas formulações. Por fim, como uma aplicação, utilizamos a metodologia da transformada de Laplace para resolver a equação diferencial fracionária associada ao problema do oscilador harmônico fracionário
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We also approach fractional integration, which is necessary to introduce the concept of fractional derivatives. Two formulations for the fractional derivative are studied, the formulations proposed by Riemann-Liouville and by Caputo. We investigate which classical derivatives rules can be extended to these formulations. Finally, as an application, using the Laplace transform methodology, we discuss the fractional differential equation associated with the harmonic oscillator problem
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Kárský, Vilém. „Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316278.
Der volle Inhalt der QuelleKadlčík, Libor. „Efektivní použití obvodů zlomkového řádu v integrované technice“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432494.
Der volle Inhalt der QuelleHnaien, Dorsaf. „Equations aux dérivées fractionnaires : propriétés et applications“. Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS038.
Der volle Inhalt der QuelleOur objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior
Ncube, Mahluli Naisbitt. „The natural transform decomposition method for solving fractional differential equations“. Diss., 2018. http://hdl.handle.net/10500/25348.
Der volle Inhalt der QuelleMathematical Sciences
M. Sc. (Applied Mathematics)
Toudjeu, Ignace Tchangou. „Mathematical analysis of generalized linear evolution equations with the non-singular kernel derivative“. Diss., 2019. http://hdl.handle.net/10500/25774.
Der volle Inhalt der QuelleMathematical Science
M Sc. (Applied Mathematics)
Monyayi, Victor Tebogo. „Well-posedness and mathematical analysis of linear evolution equations with a new parameter“. Diss., 2020. http://hdl.handle.net/10500/26794.
Der volle Inhalt der QuelleIn this dissertation we apply linear evolution equations to the Newtonian derivative, Caputo time fractional derivative and $-time fractional derivative. It is notable that the most utilized fractional order derivatives for modelling true life challenges are Riemann- Liouville and Caputo fractional derivatives, however these fractional derivatives have the same weakness of not satisfying the chain rule, which is one of the most important elements of the match asymptotic method [2, 3, 16]. Furthermore the classical bounded perturbation theorem associated with Riemann-Liouville and Caputo fractional derivatives has con rmed not to be in general truthful for these models, particularly for solution operators of evolution systems of a derivative with fractional parameter ' that is less than one (0 < ' < 1) [29]. To solve this problem, we introduce the derivative with new parameter, which is de ned as a local derivative but has a fractional order called $-derivative and apply this derivative to linear evolution equation and to support what we have done in the theory, we utilize application to population dynamics and we provide the numerical simulations for particular cases.
Mathematical Sciences
M.Sc. (Applied Mathematics)
Buchteile zum Thema "Caputo derivatives"
Anastassiou, George A., und Ioannis K. Argyros. „Iterative Algorithms and Left-Right Caputo Fractional Derivatives“. In Intelligent Numerical Methods: Applications to Fractional Calculus, 231–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26721-0_14.
Der volle Inhalt der QuelleAlmeida, Ricardo, Agnieszka B. Malinowska und Delfim F. M. Torres. „Fractional Euler–Lagrange Differential Equations via Caputo Derivatives“. In Fractional Dynamics and Control, 109–18. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0457-6_9.
Der volle Inhalt der QuelleAgarwal, Ravi, Snezhana Hristova und Donal O’Regan. „Non-instantaneous Impulses in Differential Equations with Caputo Fractional Derivatives“. In Non-Instantaneous Impulses in Differential Equations, 73–192. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66384-5_2.
Der volle Inhalt der QuelleChikrii, Arkadii, und Ivan Matychyn. „Riemann–Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games“. In Annals of the International Society of Dynamic Games, 61–81. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-8089-3_4.
Der volle Inhalt der QuelleAkdemir, Ahmet Ocak, Hemen Dutta, Ebru Yüksel und Erhan Deniz. „Inequalities for m-Convex Functions via Ψ-Caputo Fractional Derivatives“. In Mathematical Methods and Modelling in Applied Sciences, 215–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43002-3_17.
Der volle Inhalt der QuelleAhmad, Bashir, Ahmed Alsaedi, Sotiris K. Ntouyas und Jessada Tariboon. „Nonlinear Langevin Equation and Inclusions Involving Hadamard-Caputo Type Fractional Derivatives“. In Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, 209–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52141-1_7.
Der volle Inhalt der QuelleD’Abbicco, Marcello. „Critical Exponents for Differential Inequalities with Riemann-Liouville and Caputo Fractional Derivatives“. In Trends in Mathematics, 49–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10937-0_2.
Der volle Inhalt der QuelleLavín-Delgado, J. E., J. E. Solís-Pérez, J. F. Gómez-Aguilar und R. F. Escobar-Jiménez. „Image Edge Detection Using Fractional Conformable Derivatives in Liouville-Caputo Sense for Medical Image Processing“. In Fractional Calculus in Medical and Health Science, 1–54. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2021] |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429340567-1.
Der volle Inhalt der QuelleKashuri, Artion, und Rozana Liko. „Some New Hermite–Hadamard Type Integral Inequalities via Caputo k–Fractional Derivatives and Their Applications“. In Differential and Integral Inequalities, 435–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27407-8_14.
Der volle Inhalt der QuelleAtangana, Abdon. „A New Numerical Approximation of Fractional Differentiation: Upwind Discretization for Riemann-Liouville and Caputo Derivatives“. In Nonlinear Systems and Complexity, 193–212. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90972-1_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Caputo derivatives"
Baleanu, Dumitru. „On Constrained Systems Within Caputo Derivatives“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35009.
Der volle Inhalt der QuelleBaleanu, Dumitru, Sami I. Muslih und Eqab M. Rabei. „On Fractional Hamilton Formulation Within Caputo Derivatives“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34812.
Der volle Inhalt der QuelleTrigeassou, Jean-Claude, Nezha Maamri und Alain Oustaloup. „Initialization of Riemann-Liouville and Caputo Fractional Derivatives“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47633.
Der volle Inhalt der QuelleNarahari Achar, B. N., Carl F. Lorenzo und Tom T. Hartley. „Initialization Issues of the Caputo Fractional Derivative“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84348.
Der volle Inhalt der QuelleBaleanu, Dumitru, Om P. Agrawal und Sami I. Muslih. „Lagrangians With Linear Velocities Within Hilfer Fractional Derivative“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47953.
Der volle Inhalt der QuelleOrtigueira, Manuel D. „On the “walking dead” derivatives: Riemann-Liouville and Caputo“. In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967433.
Der volle Inhalt der QuelleWang, Jie, Jinping Liu, Junbin He, Jianyong Zhu, Tianyu Ma und Zhaohui Tang. „Edge-relevant Structure Feature Detection Using Caputo-Fabrizio Fractional-order Gaussian Derivatives“. In 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019. http://dx.doi.org/10.1109/ccdc.2019.8832964.
Der volle Inhalt der QuelleLi, Xuhao, und Patricia J. Y. Wong. „High order approximation to new generalized Caputo fractional derivatives and its applications“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043779.
Der volle Inhalt der QuelleAbdelAty, Amr M., Ahmed G. Radwan, Waleed A. Ahmed und Mariam Faied. „Charging and discharging RCα circuit under Riemann-Liouville and Caputo fractional derivatives“. In 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2016. http://dx.doi.org/10.1109/ecticon.2016.7561294.
Der volle Inhalt der QuelleBalint, Agneta M., und Stefan Balint. „Objectivity lost when Riemann-Liouville or caputo fractional order derivatives are used“. In TIM 18 PHYSICS CONFERENCE. Author(s), 2019. http://dx.doi.org/10.1063/1.5090070.
Der volle Inhalt der Quelle