Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Caputo's approach“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Caputo's approach" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Caputo's approach"
Al-Refai, Mohammed, Mohamed Ali Hajji und Muhammad I. Syam. „An Efficient Series Solution for Fractional Differential Equations“. Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/891837.
Der volle Inhalt der QuelleAlofi, Abdulaziz, Jinde Cao, Ahmed Elaiw und Abdullah Al-Mazrooei. „Delay-Dependent Stability Criterion of Caputo Fractional Neural Networks with Distributed Delay“. Discrete Dynamics in Nature and Society 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/529358.
Der volle Inhalt der QuelleBrouwer, Rein. „“Fragment of What Will Happen”“. Religion and the Arts 23, Nr. 4 (10.10.2019): 384–410. http://dx.doi.org/10.1163/15685292-02304003.
Der volle Inhalt der QuelleTaïeb, Amele, und Zoubir Dahmani. „Generalized Isoperimetric FVPs Via Caputo Approach“. Acta Mathematica 56 (2019): 23–40. http://dx.doi.org/10.4467/20843828am.19.003.12111.
Der volle Inhalt der QuelleJean-Claude, Trigeassou, Maamri Nezha und Oustaloup Alain. „The Caputo Derivative And The Infinite State Approach“. IFAC Proceedings Volumes 46, Nr. 1 (Februar 2013): 587–92. http://dx.doi.org/10.3182/20130204-3-fr-4032.00122.
Der volle Inhalt der QuelleKoca, Ilknur, und Pelin Yaprakdal. „A new approach for nuclear family model with fractional order Caputo derivative“. Applied Mathematics and Nonlinear Sciences 5, Nr. 1 (31.03.2020): 393–404. http://dx.doi.org/10.2478/amns.2020.1.00037.
Der volle Inhalt der QuelleEvirgen, Fırat, und Mehmet Yavuz. „An Alternative Approach for Nonlinear Optimization Problem with Caputo - Fabrizio Derivative“. ITM Web of Conferences 22 (2018): 01009. http://dx.doi.org/10.1051/itmconf/20182201009.
Der volle Inhalt der QuelleHasan, Nabaa N., und Zainab John. „Analytic Approach for Solving System of Fractional Differential Equations“. Al-Mustansiriyah Journal of Science 32, Nr. 1 (21.02.2021): 14. http://dx.doi.org/10.23851/mjs.v32i1.929.
Der volle Inhalt der QuelleHoa, Ngo Van, Ho Vu und Tran Minh Duc. „Fuzzy fractional differential equations under Caputo–Katugampola fractional derivative approach“. Fuzzy Sets and Systems 375 (November 2019): 70–99. http://dx.doi.org/10.1016/j.fss.2018.08.001.
Der volle Inhalt der QuelleAlbadarneh, Ramzi B., Iqbal Batiha, A. K. Alomari und Nedal Tahat. „Numerical approach for approximating the Caputo fractional-order derivative operator“. AIMS Mathematics 6, Nr. 11 (2021): 12743–56. http://dx.doi.org/10.3934/math.2021735.
Der volle Inhalt der QuelleDissertationen zum Thema "Caputo's approach"
Šustková, Apolena. „Řešení obyčejných diferenciálních rovnic neceločíselného řádu metodou Adomianova rozkladu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445455.
Der volle Inhalt der QuelleMuniswamy, Sowmya. „Analytical and Numerical Approach to Caputo Fractional Differential Equations via Generalized Iterative Schemes with Applications“. Thesis, University of Louisiana at Lafayette, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3622948.
Der volle Inhalt der QuelleNatural lower and upper solutions for initial value problems guarantees the interval of existence. However, coupled lower and upper solutions used as initial approximation in generalized iterative method are very useful since the iterates can be computed without any extra assumption. Generalized monotone method, along with the method of lower and upper solutions, has been used to develop the coupled lower and upper solutions on an extended interval for both scalar and system of Caputo fractional differential equations. This method yields linear convergence. Generalized quasilinearization method, along with the method of lower and upper solutions, was used to compute the coupled minimal and maximal solutions, if coupled lower and upper solutions existed for the scalar Caputo fractional differential equations. This method yielded quadratic convergence. Also, a mixed method of monotone method and quasilinearization method was developed to compute the coupled minimal and maximal solutions, if coupled lower and upper solutions existed, for the scalar Caputo fractional differential equations. This mixed method was used to compute the coupled lower and upper solutions on the desired interval, which yielded superlinear convergence. Numerical examples have been provided as an application of the analytical results.
Hernández-Hernández, Ma Elena. „On the probabilistic approach to the solution of generalized fractional differential equations of Caputo and Riemann-Liouville type“. Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/88783/.
Der volle Inhalt der QuelleBuchteile zum Thema "Caputo's approach"
Diethelm, Kai. „Caputo’s Approach“. In Lecture Notes in Mathematics, 49–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2_3.
Der volle Inhalt der Quelle„Caputi’s Alternative Approach to Clinical Evaluation“. In Teaching in Nursing and Role of the Educator. New York, NY: Springer Publishing Company, 2017. http://dx.doi.org/10.1891/9780826140142.ap03.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Caputo's approach"
Faieghi, Mohammad Reza, Hadi Delavari und Ali Akbar Jalali. „Control of Lorenz system with a novel fractional controller: A Caputo's differintegration based approach“. In 2011 2nd International Conference on Control, Instrumentation, and Automation (ICCIA). IEEE, 2011. http://dx.doi.org/10.1109/icciautom.2011.6356729.
Der volle Inhalt der QuellePandey, Rajesh K., und Om P. Agrawal. „Numerical Scheme for Generalized Isoparametric Constraint Variational Problems With A-Operator“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12388.
Der volle Inhalt der QuelleAgrawal, Om P. „A Numerical Scheme and an Error Analysis for a Class of Fractional Optimal Control Problems“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87367.
Der volle Inhalt der QuelleMagin, Richard L., und Dumitru Baleanu. „NMR Measurements of Anomalous Diffusion Reflect Fractional Order Dynamics“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34224.
Der volle Inhalt der QuelleAgrawal, Om P., Md Mehedi Hasan und X. W. Tangpong. „A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48768.
Der volle Inhalt der Quelle