Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Capture de CO₂“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Capture de CO₂" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Capture de CO₂"
Green, N. S., C. E. Early, L. K. Beard und K. T. Wilkins. „Multiple captures of fulvous harvest mice (Reithrodontomys fulvescens) and northern pygmy mice (Baiomys taylori): evidence for short-term co-traveling“. Canadian Journal of Zoology 90, Nr. 3 (März 2012): 313–19. http://dx.doi.org/10.1139/z11-137.
Der volle Inhalt der QuelleAresta, Michele, Angela Dibenedetto und Antonella Angelini. „The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1996 (13.08.2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Der volle Inhalt der QuelleRoussanaly, Simon, und Rahul Anantharaman. „Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources“. Chemical Engineering Journal 327 (November 2017): 618–28. http://dx.doi.org/10.1016/j.cej.2017.06.082.
Der volle Inhalt der QuelleSaragih, Harriman Samuel, Togar Simatupang und Yos Sunitiyoso. „From co-discovery to co-capture: co-innovation in themusic business“. International Journal of Innovation Science 11, Nr. 4 (29.11.2019): 600–617. http://dx.doi.org/10.1108/ijis-07-2019-0068.
Der volle Inhalt der QuelleLeverick, Graham, und Betar M. Gallant. „Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions“. ECS Meeting Abstracts MA2023-01, Nr. 26 (28.08.2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Der volle Inhalt der QuelleRamanan, G., und Gordon R. Freeman. „Electron thermalization distance distribution in liquid carbon monoxide: electron capture“. Canadian Journal of Chemistry 66, Nr. 5 (01.05.1988): 1304–12. http://dx.doi.org/10.1139/v88-212.
Der volle Inhalt der QuelleWang, Tao, Kun Ge, Jun Liu und Meng Xiang Fang. „A Thermodynamic Analysis of the Fuel Synthesis System with CO2 Direct Captured from Atmosphere“. Advanced Materials Research 960-961 (Juni 2014): 308–15. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.308.
Der volle Inhalt der QuelleChan, Hao Xian Malcolm, Eng Hwa Yap und Jee Hou Ho. „Overview of Axial Compression Technology for Direct Capture of CO2“. Advanced Materials Research 744 (August 2013): 392–95. http://dx.doi.org/10.4028/www.scientific.net/amr.744.392.
Der volle Inhalt der QuelleDeng, Liyuan, und Hanne Kvamsdal. „CO 2 capture: Challenges and opportunities“. Green Energy & Environment 1, Nr. 3 (Oktober 2016): 179. http://dx.doi.org/10.1016/j.gee.2016.12.002.
Der volle Inhalt der QuelleReis Machado, Ana S., und Manuel Nunes da Ponte. „CO 2 capture and electrochemical conversion“. Current Opinion in Green and Sustainable Chemistry 11 (Juni 2018): 86–90. http://dx.doi.org/10.1016/j.cogsc.2018.05.009.
Der volle Inhalt der QuelleDissertationen zum Thema "Capture de CO₂"
Bala, Shashi. „Novel approaches for CO₂ capture“. Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713474.
Der volle Inhalt der QuelleDing, Tao. „Gas hydrates to capture and sequester CO₂“. Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-11102004-141404.
Der volle Inhalt der QuelleSuri, Rajat. „CO₂ compression for capture-enabled power systems“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46616.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 182-185).
The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon capture and sequestration technologies (CCS), but these technologies add significant capital and operating cost at present, which creates a significant barrier to adoption. Carbon dioxide compression technology makes up a high proportion of the additional cost required, making it a focal point for engineering efforts to improve the economic feasibility of carbon capture. To this effect, shock compressors have the potential to reduce both operating and capital costs with supporting compression ratios of up to 10:1, requiring less stages and theoretically allowing for the possibility of heat integration with the rest of the plant, allowing waste heat to be recovered from hot interstage compressed carbon dioxide. This thesis first presents a technical context for carbon dioxide compression by providing an overview of capture technologies to build an understanding of the different options being investigated for efficient removal of carbon dioxide from power plant emissions. It then examines conventional compression technologies, and how they have each evolved over time. Sample engineering calculations are performed to model gas streams processed by these conventional compressors. An analysis of shock compression is carried out by first building a background in compressible flow theory, and then using this as a foundation for understanding shock wave theory, especially oblique shocks. The shock compressor design is carefully analyzed using patent information, and a simulation of the physics of the shock compressor is created using equations from the theory section described earlier.
(cont.) A heat integration analysis is carried out to compare how conventional compressor technologies compare against the new shock compressor in terms of cooling duty and power recovery when integrated with the carbon dioxide capture unit. Both precombustion IGCC using Selexol and post-combustion MEA configurations are considered and compared. Finally an economic analysis is conducted to determine whether shock compression technology should be attractive to investors and plant managers deciding to support it. Key factors such as market, macroeconomic and technical risk are analyzed for investors, whereas a comparison of capital and operating cost is carried out for plant managers. Relevant risks associated with new compression technologies are also analyzed. It is found that there is no significant operating cost benefit to the shock compressor over the conventional compressor, both costing $3,700/hr for an IGCC plant. Power recovery is simply too low to justify the high power requirements in operating a shock compressor with a 10:1 ratio. The technical claims of the shock compressor (such as projected discharge temperature and pressures) seem reasonable after basic modeling, which shows a higher temperature and pressure than claimed by Ramgen.
by Rajat Suri.
S.M.
Lively, Ryan P. „Hollow fiber sorbents for post-combustion CO₂ capture“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43758.
Der volle Inhalt der QuelleOgbuka, Chidi Premie. „Development of solid adsorbent materials for CO₂capture“. Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13276/.
Der volle Inhalt der QuelleBollini, Praveen P. „Amine-oxide adsorbents for post-combustion CO₂ capture“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52908.
Der volle Inhalt der QuelleDidas, Stephanie Ann. „Structural properties of aminosilica materials for CO₂ capture“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54020.
Der volle Inhalt der QuelleLi, Jia. „Options for introducing CO₂ capture and capture readiness for coal fired power plants in China“. Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6393.
Der volle Inhalt der QuelleDi, Felice Luca, Claire Courson, Katia Gallucci, Nader Jand, Sergio Rapagnà, Pier Ugo Foscolo und Alain Kiennemann. „One-step hydrocarbons steam reforming and CO 2 capture“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192989.
Der volle Inhalt der QuelleDi, Felice Luca, Claire Courson, Katia Gallucci, Nader Jand, Sergio Rapagnà, Pier Ugo Foscolo und Alain Kiennemann. „One-step hydrocarbons steam reforming and CO 2 capture“. Diffusion fundamentals 7 (2007) 3, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14159.
Der volle Inhalt der QuelleBücher zum Thema "Capture de CO₂"
Gielen, Dolf. Prospects for CO₂ capture and storage. Paris, France: OECD/IEA, 2004.
Den vollen Inhalt der Quelle findenAgency, International Energy, und Organisation for Economic Co-operation and Development., Hrsg. Prospects for CO₂ capture and storage. Paris, France: International Energy Agency/Organisation for Rconomic Co-operation and Development, 2004.
Den vollen Inhalt der Quelle findenGielen, Dolf. Prospects for CO₂ capture and s. Paris, France: OECD/IEA, 2004.
Den vollen Inhalt der Quelle findenLecomte, Fabrice. CO₂ capture: Technologies to reduce greenhouse gas emissions. Paris, France: Editions Technip, 2010.
Den vollen Inhalt der Quelle findenAttalla, Moetaz I. Recent advances in post-combustion CO₂ capture chemistry. Washington, DC: American Chemical Society, 2012.
Den vollen Inhalt der Quelle findenKamel, Bennaceur, Gielen Dolf, Kerr Tom, Tam Cecilia, International Energy Agency und Organisation for Economic Co-operation and Development., Hrsg. CO₂ capture and storage: A key carbon abatement option. Paris: OECD/IEA, 2008.
Den vollen Inhalt der Quelle findenC, Thomas David, und Benson Sally, Hrsg. Carb on dioxide capture for storage in deep geologic formations: Results from the COb2s Capture Project. Amsterdam: Elsevier, 2005.
Den vollen Inhalt der Quelle findenCO₂ capture and storage projects. Luxembourg: Office for Official Publications of the European Communities, 2007.
Den vollen Inhalt der Quelle findenCarbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO² Capture Project: Vol 1 - Capture and Separation of Carbon Dioxide ... and Verification (Co2 Capture Project). Elsevier Science, 2005.
Den vollen Inhalt der Quelle finden(Editor), David Thomas, und Sally Benson (Editor), Hrsg. Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO² Capture Project: Vol 1 - Capture and Separation of Carbon Dioxide ... and Verification (Co2 Capture Project). Elsevier Science, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Capture de CO₂"
Mariyamma, P. N., Song Yan, R. D. Tyagi, Rao Y. Surampalli und Tian C. Zhang. „CO 2 Sequestration and Leakage“. In Carbon Capture and Storage, 113–57. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch05.
Der volle Inhalt der QuelleJin, Wenbiao, Guobin Shan, Tian C. Zhang und Rao Y. Surampalli. „CO 2 Scrubbing Processes and Applications“. In Carbon Capture and Storage, 239–80. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch09.
Der volle Inhalt der QuelleBaker, Erin, Gregory Nemet und Peter Rasmussen. „Modeling the Costs of Carbon Capture“. In Handbook of CO₂ in Power Systems, 349–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27431-2_16.
Der volle Inhalt der QuelleRamakrishnan, Anushuya, Tian C. Zhang und Rao Y. Surampalli. „Monitoring, Verification and Accounting of CO 2 Stored in Deep Geological Formations“. In Carbon Capture and Storage, 159–94. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch06.
Der volle Inhalt der QuelleChandel, Munish K., B. R. Gurjar, C. S. P. Ojha und Rao Y. Surampalli. „Modeling and Uncertainty Analysis of Transport and Geological Sequestration of CO 2“. In Carbon Capture and Storage, 475–97. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch17.
Der volle Inhalt der QuelleTao, Duan-Jian, und Zhang-Min Li. „Ionic Liquids in CO Capture and Separation“. In Encyclopedia of Ionic Liquids, 1–7. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6739-6_140-1.
Der volle Inhalt der QuelleTao, Duan-Jian, und Zhang-Min Li. „Ionic Liquids in CO Capture and Separation“. In Encyclopedia of Ionic Liquids, 740–46. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_140.
Der volle Inhalt der QuelleRomeo, Luis M. „CO2 Capture: Integration and Overall System Optimization in Power Applications“. In Handbook of CO₂ in Power Systems, 327–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27431-2_15.
Der volle Inhalt der QuelleCoxam, Jean-Yves, und Karine Ballerat-Busserolles. „$$\mathrm{{CO}}_{2}$$ Capture in Industrial Effluents. Calorimetric Studies“. In Calorimetry and Thermal Methods in Catalysis, 481–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-11954-5_14.
Der volle Inhalt der QuelleJacobs, David Steve, und Anna Bastian. „Bat Echolocation: Adaptations for Prey Detection and Capture“. In Predator–Prey Interactions: Co-evolution between Bats and Their Prey, 13–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32492-0_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Capture de CO₂"
Tateno, Tomoyuki, Naoki Ishibashi und Yasushi Kiyoki. „Geographical Mapping and Knowledgebase Indicative Cost Estimation for Direct Air Capture CO2 Utilization“. In 2024 International Electronics Symposium (IES), 359–64. IEEE, 2024. http://dx.doi.org/10.1109/ies63037.2024.10665766.
Der volle Inhalt der QuelleCarrillo, E. J., J. Lizcano-Prada, V. Kafaro, D. Rodriguez-Vallejo und A. Uribe-Rodr�guez. „Techno economical assessment of a low-carbon hydrogen production process using residual biomass gasification and carbon capture“. In Foundations of Computer-Aided Process Design, 681–90. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.153241.
Der volle Inhalt der QuellePeng, Lei, Qiang Fu, Musong Lin, Zaikun Wu, Zhihua Xu und Tianrong Zhu. „Research progress of ionic liquids for CO₂ capture“. In 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). IEEE, 2022. http://dx.doi.org/10.1109/cieec54735.2022.9846593.
Der volle Inhalt der QuelleSelani, Daniyal, und Ilaria Tiddi. „Knowledge Extraction from Auto-Encoders on Anomaly Detection Tasks Using Co-activation Graphs“. In K-CAP '21: Knowledge Capture Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3460210.3493571.
Der volle Inhalt der QuelleGARCIA, C., C. A. HABERT und C. P. BORGES. „CO2 CAPTURE FROM FLUE GAS USING MEMBRANE CONTACTORS“. In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.067.
Der volle Inhalt der QuelleXie, Tianyou. „CO2 Capture by Applying Porous Carbon“. In 2021 International Conference on Public Art and Human Development ( ICPAHD 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220110.133.
Der volle Inhalt der Quellevan den Brink, Ruud W., Frank A. de Bruijn, L. T. Handoko und Masbah R. T. Siregar. „Materials for Hydrogen Production with Integrated CO[sub 2] Capture“. In INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY. AIP, 2009. http://dx.doi.org/10.1063/1.3243238.
Der volle Inhalt der QuellePapoutsakis, Konstantinos, Costas Panagiotakis und Antonis A. Argyros. „Temporal Action Co-Segmentation in 3D Motion Capture Data and Videos“. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.231.
Der volle Inhalt der QuelleAlkhatib, Ismail, Ahmed Al-Hajaj, Mohammad Abu Zahra und Lourdes Vega. „A Thermodynamic Robust Model to Assess Hybrid Solvents for CO Capture“. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/203020-ms.
Der volle Inhalt der QuelleHosokawa, Toshinori, Kenichiro Misawa, Hiroshi Yamazaki, Masayoshi Yoshimura und Masayuki Arai. „A Low Capture Power Oriented X-Identification-Filling Co-Optimization Method“. In 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE, 2020. http://dx.doi.org/10.1109/iolts50870.2020.9159735.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Capture de CO₂"
Snyder, S. W. Novel CO{sub 2} capture. Final CRADA Report. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/969638.
Der volle Inhalt der QuelleKulkarni, S., D. Hasse, E. Sanders und T. Chaubey. CO{sub 2} Capture by Sub-ambient Membrane Operation. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1149477.
Der volle Inhalt der QuelleGary T. Rochelle, J.Tim Cullinane, Marcus Hilliard, Eric Chen, Babatunde Oyenekan und Ross Dugas. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/837002.
Der volle Inhalt der QuelleToy, Lora, Atish Kataria und Raghubir Gupta. CO₂ Capture Membrane Process for Power Plant Flue Gas. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1062652.
Der volle Inhalt der QuelleBrown, Alfred "Buz", Andrew Awtry und Erik Meuleman. ION Advanced Solvent CO2 Capture Pilot Project. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484045.
Der volle Inhalt der QuelleKrishnan, Gopala, Marc Hornbostel, Jianer Bao, Jordi Perez, Anoop Nagar und Angel Sanjurjo. Development of Novel Carbon Sorbents for CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1132602.
Der volle Inhalt der QuelleLivengood, C., und R. Doctor. Evaluation of options for CO{sub 2} capture/utilization/disposal. Test accounts, Oktober 1992. http://dx.doi.org/10.2172/10184057.
Der volle Inhalt der QuelleBrown, Alfred, und Nathan Brown. Novel Solvent System for Post Combustion CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1155036.
Der volle Inhalt der QuelleChuang, Steven. Metal Monolithic Amine-grafted Zeolite for CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), März 2011. http://dx.doi.org/10.2172/1052998.
Der volle Inhalt der QuelleWood, Benjamin, Sarah Genovese, Robert Perry, Irina Spiry, Rachael Farnum, Surinder Sing, Paul Wilson et al. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1131945.
Der volle Inhalt der Quelle