Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Capability of the measurement process“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Capability of the measurement process" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Capability of the measurement process"
Persijn, Marcel, und Yves Van Nuland. „RELATION BETWEEN MEASUREMENT SYSTEM CAPABILITY AND PROCESS CAPABILITY“. Quality Engineering 9, Nr. 1 (Januar 1996): 95–98. http://dx.doi.org/10.1080/08982119608919020.
Der volle Inhalt der QuelleMcNEESE, WILLIAM H., und ROBERT A. KLEIN. „MEASUREMENT SYSTEMS, SAMPLING, AND PROCESS CAPABILITY“. Quality Engineering 4, Nr. 1 (Januar 1991): 21–39. http://dx.doi.org/10.1080/08982119108918890.
Der volle Inhalt der QuelleDing, Jian Jie. „Software Product Line Measurement Process Capability Maturity Model“. Applied Mechanics and Materials 536-537 (April 2014): 673–77. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.673.
Der volle Inhalt der QuelleKippenbrock, K., und G. Lanza. „Prozessfähigkeitsuntersuchung mit Messunsicherheit*/Improving process capability assessments“. wt Werkstattstechnik online 105, Nr. 07-08 (2015): 555–59. http://dx.doi.org/10.37544/1436-4980-2015-07-08-113.
Der volle Inhalt der QuelleBarnfather, J. D., M. J. Goodfellow und T. Abram. „Photogrammetric measurement process capability for metrology assisted robotic machining“. Measurement 78 (Januar 2016): 29–41. http://dx.doi.org/10.1016/j.measurement.2015.09.045.
Der volle Inhalt der QuelleBordignon, Silvano, und Michele Scagliarini. „Statistical analysis of process capability indices with measurement errors“. Quality and Reliability Engineering International 18, Nr. 4 (2002): 321–32. http://dx.doi.org/10.1002/qre.464.
Der volle Inhalt der QuelleHsu, B. M., M. H. Shu und W. L. Pearn. „Measuring process capability based onCpmk with gauge measurement errors“. Quality and Reliability Engineering International 23, Nr. 5 (2007): 597–614. http://dx.doi.org/10.1002/qre.836.
Der volle Inhalt der QuelleCoker, S. A., S. J. Oh und Y. C. Shin. „In-Process Monitoring of Surface Roughness Utilizing Ultrasound“. Journal of Manufacturing Science and Engineering 120, Nr. 1 (01.02.1998): 197–200. http://dx.doi.org/10.1115/1.2830101.
Der volle Inhalt der QuelleSouza, Lucas de Paula Ferreira, und Cláudio Milton Montenegro Campos. „Evaluation of turbidity measuring instruments using statistical process control“. Ciência e Agrotecnologia 36, Nr. 4 (August 2012): 424–30. http://dx.doi.org/10.1590/s1413-70542012000400006.
Der volle Inhalt der QuelleYoung, G., Y. Lewis, S. Coleman und C. Hunt. „Process capability measurement of frequent replacement toric soft contact lenses“. Contact Lens and Anterior Eye 24, Nr. 1 (Januar 2001): 25–33. http://dx.doi.org/10.1016/s1367-0484(01)80006-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Capability of the measurement process"
Zapletalík, Jiří. „Optimalizace měření a metod měření vybrané součásti“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241926.
Der volle Inhalt der QuelleGregor, Jaroslav. „ANALÝZA ZPŮSOBILOSTI VÝROBNÍHO STROJE PŘI VÝROBĚ AUTOBUSŮ“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-227944.
Der volle Inhalt der QuellePolášek, Ondřej. „Metrologické charakteristiky měřícího ramene Hexagon Absolute Arm 83“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442824.
Der volle Inhalt der QuelleJežková, Kateřina. „Aplikace statistické regulace procesu na nový produkt“. Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-9362.
Der volle Inhalt der QuelleSimandl, Martin. „Zavedení SPC ve výrobním procesu“. Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-403835.
Der volle Inhalt der QuelleEklund, Henrik, und Jacob Engström. „Ensuring high-quality production during commissioning and ramp-up : A case study at Northvolt“. Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85130.
Der volle Inhalt der QuelleLaddningsbara litium-jon-batterier (LIB:s) har skapat en omställning i bilindustrin mot eldrivna fordon istället för fordon som drivs av fossila bränslen. Som en konsekvens väntas efterfrågan av LIB:s bara att öka i framtiden på grund av en ökad efterfrågan på eldrivna passagerarfordon. LIB-tillverkare måste därför öka sin produktion för att möta den växande efterfrågan. Northvolt är en svensk LIB-tillverkare som grundades 2016, med sikte på att starta produktionen av LIB:s vid fabriken Northvolt Ett i Skellefteå under 2021. Fabriken Northvolt Ett kommer att vara en av de största batterifabrikerna i Europa och leverera battericeller för både kommersiell och privat användning. Dåligt tillverkade battericeller kan potentiellt orsaka allvarliga händelser som bränder eller explosioner, vilket vidare stödjer behovet av batterier med hög kvalitet. Till följd av detta är kraven från standarder och tillverkare inom bilindustrin höga i termer av kvalitetskontroll av produkter genom t.ex. mätsystemanalys (MSA), statistisk processtyrning (SPS), och duglighetsanalys. Vidare visar tidigare forskning på problem som kan uppstå under driftsättning och upprampning av produktion, vilka potentiellt kan uppstå för Northvolt Ett. Syftet med denna studie har varit att beskriva hur högkvalitativ produktion kan säkerställas och upprätthållas under och efter driftsättning. Studien har genomförts som en kvalitativ fallstudie vid Northvolt Ett med fokus på kvalifikation av coating-processen. Utgångspunkten för studien har varit att undersöka tidigare forskning inom kvalitetssäkring från andra industrier, analysera standarder från bilindustrin, och hämta in lärdomar från pilotproduktionen vid Northvolt Labs i Västerås. Ostrukturerade intervjuer genomfördes med anställda på Northvolt för att öka förståelsen för vad som tidigare gjorts relaterat till kvalitetssäkring för Coating. Lärdomarna från Northvolt Labs visade ett tydligt fokus på förebyggande åtgärder, som upprättande av en Design-FMEA, Process-FMEA, och en kontrollplan för coating-processen. Dock identifierades ett förbättringsområde inom åtgärder för processförbättring och kontroll, då avsaknaden av SPS har genererat opålitliga resultat från den genomförda duglighetsanalysen. Vidare har tidigare forskning visat att förebyggande åtgärder borde kombineras med åtgärder för processförbättring för att snabbt uppnå fullskalig produktion. Rekommendationer har därför tagits fram till Northvolt för att implementera en tydlig strategi för produktkvalifikation genom SPS och duglighetsanalys, som ett komplement till de förebyggande åtgärderna. Dessa rekommendationer inkluderar specifika förslag för validering av coating-processen samt ett generellt ramverk för processvalidering genom MSA, SPS, och duglighetsanalys. De presenterade rekommendationerna kan hjälpa Northvolt att genomföra en framgångsrik driftsättning av processerna på Northvolt Ett och kan även vara användbara för processvalidering i andra tillverkningsindustrier.
Batista, Gabriela de Fatima. „Programa de medição para organizações de alta maturidade“. [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260163.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-04T03:55:01Z (GMT). No. of bitstreams: 1 Batista_GabrieladeFatima_M.pdf: 1354598 bytes, checksum: 95bb9bb4e444a6f9b717df69650f4e8b (MD5) Previous issue date: 2005
Resumo: Organizações de alto nível de maturidade têm como meta principal a melhoria contínua de seus processos. Essas organizações usam sistematicamente métricas e fazem análise dos dados coletados para tomada de decisão, ou seja, fazem efetivamente gerenciamento por dados. Avaliação quantitativa da capacidade do processo de software definido para o projeto e suas variações permite planejar e gerenciar melhor os projetos. Considerando a necessidade de medir, prever e ajustar o processo de software para alcançar as metas de qualidade, um programa de medição é proposto com o intuito de dar suporte à gerência quantitativa. O programa de medição apresenta métricas alinhadas às metas organizacionais e exige que, após a coleta dos dados e sua análise, os envolvidos nessas métricas - um gerente administrativo, um gerente funcional, um líder de projeto ou um desenvolvedor - comprometam-se a usar os resultados da análise para identificar os desvios de processo e aplicar as ações corretivas necessárias; desta forma, pode-se controlar o desempenho do processo de desenvolvimento de software dentro dos limites aceitáveis. Para apoiar o processo de implantação e aplicação de métricas, uma ferramenta de coleta, validação e análise dos dados, baseada em controle estatístico de processo, denominada Vigia, foi desenvolvida. Vigia pode ser usada para controlar o desempenho do processo de software definido para o projeto assegurando que o processo não compromete as metas de qualidade da organização nem as metas de negócio, por meio de ações corretivas em tempo real e, conseqüentemente, de ajustes no processo de software. Um estudo de caso foi realizado na Motorola Industrial para avaliar tanto o programa de medição como a ferramenta Vigia
Abstract: Organizations of a high level of maturity have as main goal the continuous improvement of their processes. Such organizations systematically apply metrics by measuring process performance and analyzing these measurements to make decisions; hence, they effectively perform management by data. Quantitative assessment of the performance of the project's defined software process and its variations allows better planning and management of projects. Considering the need for measuring, predicting and adjusting the software process to reach quality goals, a measurement program is being proposed to give support to quantitative management. The measurement program presents metrics aligned to the organizational goals and requires that, after data collection and analysis, the metrics stakeholders - a senior manager, a functional manager, a project leader or a developer - be committed to use the results of the analysis to identify process deviations and to apply the necessary corrective actions. In this way, we may control the performance of the project's defined software process within acceptable limits. To support deployment of the measurement process and application of metrics, a tool to collect, validate and analyze data, based on statistical process control, called Vigia, was developed. Vigia can be used to control the performance of the project's defined software process, assuring that the process does not compromise neither the organizational quality goals nor the business goals through corrective actions in near-real time. Consequently, it carries through adjustments in the software process. A case study was carried out at Motorola Company to evaluate the measurement program as well as the Vigia tool
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Behrman, Robert. „Structural Measurement Of Military Organization Capability“. Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/373.
Der volle Inhalt der QuelleRocha, Hermes Soares da. „Controle estatístico de qualidade aplicado a ensaios de material de irrigação“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-25042017-150034/.
Der volle Inhalt der QuelleLaboratory tests for technical evaluation or irrigation material testing involve the measurement of various greatnesses, as well as monitoring and control of test conditions. Any measurement and control system naturally presents instabilities that can affect the quality of the test results, resulting in increased measurement uncertainty. The implementation of the Statistical Quality Control may be promising for detecting causes of variation non-random, evaluation of the tolerance permitted to data of the process and breakdown of the main variability components of a measuring system. In this sense, considering the hypothesis of possibility of improving the quality of test results, the present study aimed at using statistical quality control techniques and measurement systems analysis to assess the reliability of test benches of microirrigation emitters, improve measurement and control systems adopted in the benches and to diagnose percentage of contribution of the factors inherent in the measurement and control systems in the total variability of flow measurements on uniformity tests. The research was carried in Laboratório de Ensaios de Material de Irrigação (LEMI/INCTEI/ ESALQ/USP). Shewhart control charts were developed, exponentially weighted moving average (EWMA), and capability index for the process of measuring the test pressure, temperature monitoring of water and flow, regarded as the quality variables for determination the flow curves as a function of inlet pressure and uniformity of flow for microsprinkler emitters and drip. In addition, it was made study of repeatability and reproducibility (Gage RR) of flow measurement system for which were used 10 repetitions in three work shifts (morning, afternoon and evening), with 13 emitters in the microsprinkler\'s bench and 25 emitters in the drip bench. There wasn\'t influence of the work shift in the obtained measures for flow and the improvement of the adjustment process of the test pressure for the implementation of the integrative-derivative proportional controller (PID) to microsprinklers test was sufficiently detected by control charts. The pressure and water of temperature remained stable during the tests and weren\'t identified non-random causes of variability in routine tests. The process control and measurement of pressure was classified \"excellent\" to performance and capability to remain in the range of specification and centralization in relation to the reference value (desired target), to the two benches. As expected, the variability between emitters was the greater contribution component in the total variance of flow, corresponding to 95.47% and 96.77% for microsprinkler and drip, respectively. The repeatability and reproducibility for flow measurement system (Gage RR) was \"acceptable\" for the two benches, with the contributions respective of 4.53% and 3.23% relative to the total variance, associated with uncertainties of Gage RR.
Albing, Malin. „Contributions to process capability indices and plots /“. Luleå, 2008. http://epubl.ltu.se/1402-1544/2008/63/.
Der volle Inhalt der QuelleBücher zum Thema "Capability of the measurement process"
Kotz, Samuel. Process capability indices. London: Chapman & Hall, 1993.
Den vollen Inhalt der Quelle findenKotz, Samuel, und Norman L. Johnson. Process Capability Indices. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4465-8.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. Measurement Process Qualification. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.
Der volle Inhalt der QuelleMas, Antonia, Antoni Mesquida, Rory V. O'Connor, Terry Rout und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67383-7.
Der volle Inhalt der QuelleRout, Terry, Rory V. O’Connor und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19860-6.
Der volle Inhalt der QuelleMas, Antonia, Antoni Mesquida, Terry Rout, Rory V. O’Connor und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30439-2.
Der volle Inhalt der QuelleMitasiunas, Antanas, Terry Rout, Rory V. O’Connor und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13036-1.
Der volle Inhalt der QuelleClarke, Paul M., Rory V. O'Connor, Terry Rout und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38980-6.
Der volle Inhalt der QuelleO’Connor, Rory V., Terry Rout, Fergal McCaffery und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21233-8.
Der volle Inhalt der QuelleStamelos, Ioannis, Rory V. O'Connor, Terry Rout und Alec Dorling, Hrsg. Software Process Improvement and Capability Determination. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00623-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Capability of the measurement process"
Dietrich, Edgar, und Alfred Schulze. „Measurement Process Capability“. In Measurement Process Qualification, 1–15. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.001.
Der volle Inhalt der QuelleDrain, David. „Measurement Capability“. In Statistical Methods for Industrial Process Control, 228–81. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-4088-5_4.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Gage Capability as a Measurement Process Capability Study“. In Measurement Process Qualification, 44–116. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.005.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Capability Studies in Visual Inspections“. In Measurement Process Qualification, 244–47. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.013.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Capability Study of Attribute Measurement Processes“. In Measurement Process Qualification, 117–42. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.006.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Special Cases in Measurement Process Capability“. In Measurement Process Qualification, 236–37. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.010.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Typical Questions about Measurement Process Capability“. In Measurement Process Qualification, 241–43. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.012.
Der volle Inhalt der QuelleDietrich, Edgar, und Alfred Schulze. „Gage Monitoring as a Basis for Measurement Process Capability“. In Measurement Process Qualification, 16–21. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446429550.002.
Der volle Inhalt der QuelleOakland, John, und Robert Oakland. „Process capability for variables and its measurement“. In Statistical Process Control, 247–62. 7. Aufl. 7th edition. | Abingdon, Oxon ; New York, NY : Routledge, 2019.: Routledge, 2018. http://dx.doi.org/10.4324/9781315160511-10.
Der volle Inhalt der QuelleKučera, Ĺuboš, Jakub Palenčár, Rudolf Palenčár, Stanislav Ďuriš, Ján Vachálek und Jan Rybář. „Monitoring of the Measurement Process Capability by Using Capability Indices“. In Current Methods of Construction Design, 327–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33146-7_37.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Capability of the measurement process"
YongGang, Mei, und Ding JianJie. „Software Measurement Process Capability Maturity Model“. In 2010 Second International Conference on Computer Modeling and Simulation (ICCMS). IEEE, 2010. http://dx.doi.org/10.1109/iccms.2010.453.
Der volle Inhalt der QuelleWearring, Colin, und Chris Slon. „Process Capability Measurements for Complex Assemblies“. In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911641.
Der volle Inhalt der QuelleShiou, Fang-Jung, und Po-Chuan Su. „Intermittent process measurement and process capability analysis using MP700 touch trigger probe on a CNC machining center“. In Third International Symposium on Precision Mechanical Measurements. SPIE, 2006. http://dx.doi.org/10.1117/12.716147.
Der volle Inhalt der QuelleShi, Liangxing, Zhen He, Yanfen Liu und Xin Wang. „An Application Study on a Coating Process Capability Analysis with Measurement Errors“. In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5303875.
Der volle Inhalt der QuelleSui, Rubin, und Fuyan Li. „The Application of Process Capability Analysis in Measurement Phase of 6sigma Model“. In 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5660116.
Der volle Inhalt der QuelleAhsan, Syed Nadeem, und Franz Wotawa. „Fault Prediction Capability of Program File's Logical-Coupling Metrics“. In 2011 Joint Conf of 21st Int'l Workshop on Software Measurement and the 6th Int'l Conference on Software Process and Product Measurement (IWSM-MENSURA). IEEE, 2011. http://dx.doi.org/10.1109/iwsm-mensura.2011.38.
Der volle Inhalt der QuelleFoulloy, Laurent, und Gilles Mauris. „Process Capability Indices Based on Skewed Possibility Distributions for Drilling Operations“. In 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). IEEE, 2021. http://dx.doi.org/10.1109/civemsa52099.2021.9493671.
Der volle Inhalt der QuelleIhochi, Albert L., und Matthew E. Ross. „Improvement of aluminum interconnect overlay measurement capability through metrology and hardmask process development“. In Microlithography 2004, herausgegeben von Richard M. Silver. SPIE, 2004. http://dx.doi.org/10.1117/12.544229.
Der volle Inhalt der QuelleBuglione, Luigi, Alain Abran, Christiane Gresse Von Wangenheim, Fergal McCaffery und Jean Carlo Rossa Hauck. „Risk Management: Achieving Higher Maturity & Capability Levels through the LEGO Approach“. In 2016 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IWSM-MENSURA). IEEE, 2016. http://dx.doi.org/10.1109/iwsm-mensura.2016.028.
Der volle Inhalt der QuelleAmiri, Amirhossein, und Erfaneh Nikzad. „Statistical analysis of total process capability index in two-stage processes with measurement errors“. In 2015 International Conference on Industrial Engineering and Operations Management (IEOM). IEEE, 2015. http://dx.doi.org/10.1109/ieom.2015.7093750.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Capability of the measurement process"
Shroyer, K. Metrology measurement capability. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/10116062.
Der volle Inhalt der QuelleMeier, David E., und Joel M. Tingey. Plutonium Oxide Process Capability Work Plan. Office of Scientific and Technical Information (OSTI), Februar 2014. http://dx.doi.org/10.2172/1227071.
Der volle Inhalt der QuellePettit, R. B. Process measurement assurance program. Office of Scientific and Technical Information (OSTI), Mai 1996. http://dx.doi.org/10.2172/263007.
Der volle Inhalt der QuelleGinsberg, Mark P., und Lauren H. Quinn. Process Tailoring and the Software Capability Maturity Model(sm). Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada302689.
Der volle Inhalt der QuelleMcAndrews, Donald R. Establishing a Software Measurement Process. Fort Belvoir, VA: Defense Technical Information Center, Juli 1993. http://dx.doi.org/10.21236/ada267896.
Der volle Inhalt der QuelleWoods, W. M. Equations for Approximate Lower Confidence Limits on Process Capability Indices. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1991. http://dx.doi.org/10.21236/ada247591.
Der volle Inhalt der QuelleLaue, Frances J., Jerry W. Hedge, Melody L. Wall, Larry A. Pederson und Barbara A. Bentley. Job Performance Measurement System Development Process. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1992. http://dx.doi.org/10.21236/ada258835.
Der volle Inhalt der QuelleCremer, C. D., E. Cramer und W. Lowry. Laboratory evaluation of the Pipe Explorer{trademark} gamma measurement and deployment capability. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/650178.
Der volle Inhalt der QuelleZalewski, Daniel J. Methods for Monitoring Process Control and Capability in the Presence of Autocorrelation. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada305758.
Der volle Inhalt der QuelleBowen, Jr, und Stuart W. Provincial Reconstruction Teams' Performance Measurement Process Has Improved. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada493604.
Der volle Inhalt der Quelle