Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Calculation of hydrostatic bearing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Calculation of hydrostatic bearing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Calculation of hydrostatic bearing"
Liang, Peng, Changhou Lu und Fazhan Yang. „A fast computing approach concerning recess pressure“. Industrial Lubrication and Tribology 70, Nr. 1 (08.01.2018): 1–7. http://dx.doi.org/10.1108/ilt-12-2015-0196.
Der volle Inhalt der QuelleHuang, Long, Wen Li Ma und Jin Long Huang. „Calculation and Simulation Azimuth Hydrostatic Thrust Bearing of a Large Alt-Azimuth Telescope“. Applied Mechanics and Materials 364 (August 2013): 28–32. http://dx.doi.org/10.4028/www.scientific.net/amm.364.28.
Der volle Inhalt der QuelleZhang, Yan Qin, Xiao Dong Yu, Xiao Dong Yang, Gui Tao Sun, Xiao Yang Yu und Zhi Min Shi. „Viscosity Influence Research on Load Capacity of Heavy Hydrostatic Bearing“. Key Engineering Materials 450 (November 2010): 63–66. http://dx.doi.org/10.4028/www.scientific.net/kem.450.63.
Der volle Inhalt der QuelleZhang, Yan Qin, Rui Li, Chun Xi Dai, Jun Peng Shao, Xiao Dong Yang und Gui Tao Sun. „Temperature Field of Hydrostatic Supporting Disk in Different Viscosity and Rotational Speed“. Applied Mechanics and Materials 274 (Januar 2013): 124–27. http://dx.doi.org/10.4028/www.scientific.net/amm.274.124.
Der volle Inhalt der QuelleZhang, Yan Qin, Xiao Dong Yang, Hong Mei Li, Hui Jiang, Xiao Yang Yu und Zhi Min Shi. „Research on Influence of Cavity Depth on Load Capacity of Heavy Hydrostatic Bearing in Variable Viscosity Condition“. Advanced Materials Research 129-131 (August 2010): 1181–85. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.1181.
Der volle Inhalt der QuelleYang, Xiao Dong, Jun Peng Shao, Xiao Qiu Xu, Yun Fei Wang, Chao Yin und Hui Jiang. „Research on Velocity Influence on Thermal Deformation Field of Heavy Hydrostatic Thrust Bearing“. Advanced Materials Research 129-131 (August 2010): 968–72. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.968.
Der volle Inhalt der QuelleKodnyanko, Vladimir, und Andrey Kurzakov. „Static characteristics of a hydrostatic thrust bearing with a membrane displacement compensator“. FME Transactions 49, Nr. 3 (2021): 764–68. http://dx.doi.org/10.5937/fme2103764k.
Der volle Inhalt der QuelleWang, Shi Gang, Zi Jian Qiu und Dong Sheng Li. „Study on Capacity of Vertical Lathe for Heavy Hydrostatic Bearing“. Materials Science Forum 800-801 (Juli 2014): 559–63. http://dx.doi.org/10.4028/www.scientific.net/msf.800-801.559.
Der volle Inhalt der QuelleSan Andres, Luis. „The Effect of Journal Misalignment on the Operation of a Turbulent Flow Hydrostatic Bearing“. Journal of Tribology 115, Nr. 3 (01.07.1993): 355–63. http://dx.doi.org/10.1115/1.2921643.
Der volle Inhalt der QuelleZhang, Yan Qin, Xiao Qiu Xu, Xiao Dong Yang, Hong Mei Li, Hui Jiang, Xiao Yang Yu und Zhi Min Shi. „Analysis on Influence of Oil Film Thickness on Temperature Field of Heavy Hydrostatic Bearing in Variable Viscosity Condition“. Advanced Materials Research 239-242 (Mai 2011): 1418–21. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.1418.
Der volle Inhalt der QuelleDissertationen zum Thema "Calculation of hydrostatic bearing"
Foltýn, Jan. „Konstrukce hydrostatického uložení divadelní točny“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444275.
Der volle Inhalt der QuelleWong, Anthony Raymond. „Design of a low cost hydrostatic bearing“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74951.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 77).
This thesis presents the design and manufacturing method for a new surface self compensating hydrostatic bearing. A lumped resistance model was used to analyze the performance of the bearing and provide guidance on laying out the bearing features. One arrangement of bearing features was cut into a flat sheet of ultra high molecular weight polyethylene which was then formed into a cylindrical shape. The shaped plastic was adhered to an aluminum housing then connected to a pump. Experimental data shows that the lumped resistance model provides a good estimation of the bearing performance. After validating the analytical model, sensitivity studies were conducted to predict changes in the bearing performance due to manufacturing variances. The results of the model indicate the design is extremely robust.
by Anthony Raymond Wong.
S.M.
Ashman, D. „High-speed performance of a hydrostatic thrust bearing“. Thesis, University of Wolverhampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378961.
Der volle Inhalt der QuelleMass, Igor, Andreas Hoppermann und Hubertus Murrenhoff. „Control concept for a grease lubricated hydrostatic bearing“. Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71086.
Der volle Inhalt der QuelleRothenhöfer, Gerald S. (Gerald Sven). „Design, dynamic modeling, simulation and feedback control of hydrostatic bearing“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39888.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 113).
A hydrostatic bearing carriage (Hydrocline) that uses an open face linear motor to drive the carriage as well as to preload the hydrostatic bearings has been developed by Professor Alexander Slocum and Gerald Rothenhöfer of the Massachusetts Institute of Technology's Mechanical Engineering Department. The Hydrocline is made to cope with the increasing requirements for accuracy in silicon wafer grinding machines. The prototype was built of aluminum oxide ceramic due to its high stiffness-to-weight ratio, low thermal expansion and corrosion resistance. In order to keep the cost of manufacturing as low as possible, a modular design that uses micron-level precision ceramic beams was chosen. Initial testing of the prototype carriage indicates that it has the following performance specifications: a vertical load capacity exceeding 5000N (theoretical limit at 12000N, max. pressure of pumps); a carriage pitch error of 0.7arc seconds; a yaw error of 0.7arc seconds; a roll error of +/- 0.6arcsec a vertical straightness at the center of the carriage of +/-0.75microns; and a vertical stiffness of the carriage of 900N per micron (load range from 0 to 1000N).
(cont.) A dynamic model of the hydrostatic bearing and fluid supply system has been developed and accurately predicts the performance of the Hydrocline. The model has been used to simulate a feedback control loop that adjusts the bearing supply flow such that changes in load can be compensated and theoretically infinite stiffness can be reached. In first experiments on a specially designed test setup the measured static stiffness of the single pocket test bearing could be increased by a factor 8 (load range 45 to 270N). The dynamic stiffness of the bearing could be increased by a factor of 2.5.
by Gerald S. Rothenhöfer.
S.M.
Zulkefli, Zamir Aimaduddin Bin. „MITIGATION OF GEAR MESH-FREQUENCY VIBRATIONS UTILIZING A HYDROSTATIC BEARING“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1354902949.
Der volle Inhalt der QuelleSawicki, Jerezy Teodor. „Experimental and theoretical determination of hydrostatic/hybrid journal bearing rotordynamic coefficients“. Case Western Reserve University School of Graduate Studies / OhioLINK, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=case1056560686.
Der volle Inhalt der QuelleAlmond, R. J. „The development of a porous ceramic water hydrostatic bearing for ultra high precision applications“. Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/10572.
Der volle Inhalt der QuelleMertz, David Hunter. „Lift-off performance in flexure pivot pad and hybrid bearings“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3197.
Der volle Inhalt der QuelleKim, Paul Y. „A new method for the critical speed calculation of rotor-bearing systems“. Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5135.
Der volle Inhalt der QuelleBücher zum Thema "Calculation of hydrostatic bearing"
Ashman, David. High-speed performance of a hydrostatic thrust bearing. Wolverhampton: The Polytechnic, Wolverhampton, 1987.
Den vollen Inhalt der Quelle findenZaretsky, Erwin V. Bearing elastohydrodynamic lubrication: A complex calculation made simple. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenHendry, A. W. The calculation of eccentricities in load bearing walls. Windsor: Brick Development Association, 1986.
Den vollen Inhalt der Quelle findenFinn, William Edward. Non-Newtonian temperature and pressure effects of a powder lubricant slurry in a rotating hydrostatic step bearing. Springfield, Va: Available from the National Technical Information Service, 1993.
Den vollen Inhalt der Quelle findenSetkovSerbin, Evgeniy. Building structures. Calculation and design. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1030129.
Der volle Inhalt der QuelleRamberger, Günter. Structural bearings and expansion joints for bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2002. http://dx.doi.org/10.2749/sed006.
Der volle Inhalt der QuelleHydrostatic Aerostatic And Hybrid Bearing Design. Butterworth-Heinemann, 2012.
Den vollen Inhalt der Quelle findenHydrostatic, Aerostatic and Hybrid Bearing Design. Elsevier, 2012. http://dx.doi.org/10.1016/c2011-0-07331-3.
Der volle Inhalt der QuelleP, Hannum Ned, Meyer Scott D und United States. National Aeronautics and Space Administration., Hrsg. Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application. [Washington, DC]: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenDussaule, Jean-Claude, Martin Flamant und Christos Chatziantoniou. Function of the normal glomerulus. Herausgegeben von Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0044_update_001.
Der volle Inhalt der QuelleBuchteile zum Thema "Calculation of hydrostatic bearing"
Aoyama, Tojiro. „Hydrostatic Bearing“. In CIRP Encyclopedia of Production Engineering, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6530-4.
Der volle Inhalt der QuelleAoyama, Tojiro. „Hydrostatic Bearing“. In CIRP Encyclopedia of Production Engineering, 682–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_6530.
Der volle Inhalt der QuelleAoyama, Tojiro. „Hydrostatic Bearing“. In CIRP Encyclopedia of Production Engineering, 936–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6530.
Der volle Inhalt der QuelleRehman, Waheed Ur, Jiang Guiyun, Nadeem Iqbal, Luo Yuanxin, Wang Yongqin, Shafiq Ur Rehman, Shamsa Bibi, Farrukh Saleem, Irfan Azhar und Muhammad Shoaib. „Intelligent Servo Feedback Control for Hydrostatic Journal Bearing“. In Intelligent Computing and Internet of Things, 352–64. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2384-3_33.
Der volle Inhalt der QuelleShu, Xu. „Analytical Investigation on Static Hydrostatic Bearing by Fluent“. In Lecture Notes in Electrical Engineering, 497–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25905-0_64.
Der volle Inhalt der QuellePatil, Sumit J., Abhishek N. Khairnar, Vikas M. Phalle und Praveen K. Limaye. „Simulation of Self Compensating Hydrostatic Bearing Using Finite Element Analysis“. In Developments and Novel Approaches in Nonlinear Solid Body Mechanics, 377–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50460-1_21.
Der volle Inhalt der QuelleSoni, Sandeep, und Dnyaneshwar V. Kushare. „Static and Dynamic Characteristics of Two-Lobe Hydrostatic Journal Bearing“. In Lecture Notes in Mechanical Engineering, 685–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6469-3_63.
Der volle Inhalt der QuelleSkyba, Rudolf, Slavomír Hrček, Lukáš Smetanka und Maroš Majchrák. „Creation of Calculation 3D Model of Slewing Bearing“. In Current Methods of Construction Design, 149–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33146-7_18.
Der volle Inhalt der QuelleZhan, Shuo, Wei Pan, Yixin Zhang und Changhou Lu. „Modeling and Parameter Identification for Active Lubricated Hydrostatic Bearing-Rotor System“. In Mechanical Engineering and Materials, 197–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68303-0_16.
Der volle Inhalt der QuelleAshman, D., E. W. Parker und A. Cowley. „Dynamic Performance of a Hydrostatic Thrust Bearing with An ERFS and Grooved Lands“. In Condition Monitoring and Diagnostic Engineering Management, 14–19. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0431-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Calculation of hydrostatic bearing"
Johansen, Per, Daniel B. Roemer, Torben O. Andersen und Henrik C. Pedersen. „Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics“. In 9th FPNI Ph.D. Symposium on Fluid Power. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpni2016-1551.
Der volle Inhalt der QuelleGuo, Zenglin, Toshio Hirano und R. Gordon Kirk. „Application of CFD Analysis for Rotating Machinery: Part 1 — Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper“. In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38931.
Der volle Inhalt der QuelleBuchhorn, Nico, Sebastian Kukla, Beate Bender und Marc Neumann. „Tilting-Pad Journal Bearing in Hybrid Operation: A Numerical and Experimental Investigation“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75256.
Der volle Inhalt der QuelleShin, J. H., H. E. Kim und K. W. Kim. „Lubrication Analysis of the Thrust Bearing in the Valve Plate of a Swash-Plate Type Axial Piston“. In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61070.
Der volle Inhalt der QuelleLiebmann, Dennis, Volker Lagemann und Michael Bargende. „Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing“. In 15th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-24-0001.
Der volle Inhalt der QuelleNakao, Yohichi, Toshiaki Sano, Midori Nagashima und Kenji Suzuki. „Development and Modeling of Water Driven Stage“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64424.
Der volle Inhalt der QuelleHelene, Mathieu, Mihai Arghir und Jean Frene. „Combined Navier-Stokes and Bulk-Flow Analysis of Hybrid Bearings: Radial and Angled Injection“. In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64027.
Der volle Inhalt der QuelleArghir, Mihai, Mathieu He´le`ne und Jean Frene. „Analysis of Tangential-Against-Rotation Injection Lomakin Bearings“. In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38411.
Der volle Inhalt der QuelleChen, Ping, Shumin Zhou und Ying Shi. „Structure Design and Analysis of a Locking Band Type Quick Opening End Closure Using a New Saddle-Shaped Sealing Ring for Natural Gas Filters“. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45449.
Der volle Inhalt der QuelleIvantysyn, Roman, Ahmed Shorbagy und Jürgen Weber. „An Approach to Visualize Lifetime Limiting Factors in the Cylinder Block/Valve Plate Gap in Axial Piston Pumps“. In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4327.
Der volle Inhalt der Quelle