Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „C54-TiSi2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "C54-TiSi2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "C54-TiSi2"
Cabral, C., L. A. Clevenger, J. M. E. Harper, F. M. d'Heurle, R. A. Roy, K. L. Saenger, G. L. Miles und R. W. Mann. „Lowering the formation temperature of the C54-TiSi2 phase using a metallic interfacial layer“. Journal of Materials Research 12, Nr. 2 (Februar 1997): 304–7. http://dx.doi.org/10.1557/jmr.1997.0040.
Der volle Inhalt der QuelleCheng, S. L., J. J. Jou, L. J. Chen und B. Y. Tsui. „Formation of C54–TiSi2 in titanium on nitrogen-ion-implanted (001)Si with a thin interposing Mo layer“. Journal of Materials Research 14, Nr. 5 (Mai 1999): 2061–69. http://dx.doi.org/10.1557/jmr.1999.0278.
Der volle Inhalt der QuelleQuintero, A., M. Libera, C. Cabral, C. Lavoie und J. M. Harper. „Templating Effects On C54-Tisi2 Formation In Ternary Reactions.“ Microscopy and Microanalysis 4, S2 (Juli 1998): 666–67. http://dx.doi.org/10.1017/s143192760002345x.
Der volle Inhalt der QuelleZhang, Z.-B., S.-L. Zhang, D.-Z. Zhu, H.-J. Xu und Y. Chen. „Different routes to the formation of C54 TiSi2 in the presence of surface and interface molybdenum: A transmission electron microscopy study“. Journal of Materials Research 17, Nr. 4 (April 2002): 784–89. http://dx.doi.org/10.1557/jmr.2002.0115.
Der volle Inhalt der QuelleQuintero, A., M. Libera, C. Cabral, C. Lavoie und J. M. E. Harper. „Mechanisms for enhanced C54–TiSi2 formation in Ti–Ta alloy films on single-crystal Si“. Journal of Materials Research 14, Nr. 12 (Dezember 1999): 4690–700. http://dx.doi.org/10.1557/jmr.1999.0635.
Der volle Inhalt der QuelleWang, Ming-Jun, Wen-Tai Lin und F. M. Pan. „Effects of an interposed Cu layer on the enhanced thermal stability of C49 TiSi2“. Journal of Materials Research 17, Nr. 2 (Februar 2002): 343–47. http://dx.doi.org/10.1557/jmr.2002.0048.
Der volle Inhalt der QuelleClevenger, L. A., R. A. Roy, C. Cabral, K. L. Saenger, S. Brauer, G. Morales, K. F. Ludwig et al. „A comparison of C54-TiSi2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing“. Journal of Materials Research 10, Nr. 9 (September 1995): 2355–59. http://dx.doi.org/10.1557/jmr.1995.2355.
Der volle Inhalt der QuelleRajan, Krishna. „Twin boundaries in C54-TiSi2“. Metallurgical Transactions A 21, Nr. 9 (September 1990): 2317–22. http://dx.doi.org/10.1007/bf02646978.
Der volle Inhalt der QuellePico, C. A., und M. G. Lagally. „Angular correlation between grains of metastable TiSi2“. Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 888–89. http://dx.doi.org/10.1017/s0424820100106508.
Der volle Inhalt der QuelleNemanich, R. J., Hyeongtag Jeon, J. W. Honeycutt, C. A. Sukow und G. A. Rozgonyi. „Interface structure of epitaxial TiSi2 on Si(lll)“. Proceedings, annual meeting, Electron Microscopy Society of America 50, Nr. 2 (August 1992): 1354–55. http://dx.doi.org/10.1017/s0424820100131401.
Der volle Inhalt der QuelleDissertationen zum Thema "C54-TiSi2"
Esposito, Laura. „Mise en oeuvre de procédés innovants pour l'optimisation de contacts TiSi pour les technologies imageurs avancées“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://theses.univ-amu.fr.lama.univ-amu.fr/210319_ESPOSITO_505pj561fjb969hmp55qmrno_TH.pdf.
Der volle Inhalt der QuelleIn image sensor devices, Ti silicides are used to establish contacts between transistors and copper interconnects. A new problematic emerges with the co-integration of Ti-based and Ni-based silicided contacts: the titanium silicide (C54-TiSi2) needs to be formed at a lower temperature than the conventional formation temperature (800°C). In order to reduce the temperature of silicide formation, the influence of nanosecond laser annealing on Ti silicide contact formation has been investigated in this PhD work. To do so, consecutive deposition of Ti and TiN films with thicknesses below 10 nm were carried out after a specific surface treatment. Annealing by UV nanosecond laser (UV-NLA) at different energy densities, different numbers of shots and followed by rapid thermal annealing (RTA) for various temperatures were performed. The different samples were characterized by several methods including: four-point probe measurements, X-ray diffraction, and transmission electron microscopy. The main results obtained with the use of UV-NLA are the following: it enables the formation of an amorphous phase in the solid state and the formation of the metastable C40-TiSi2 phase becomes possible by melting the first nanometers of the substrate. By combining multiple laser shots and a subsequent RTA, the formation of the C54-TiSi2 phase at low temperature of 650 °C has been demonstrated. Studies carried out on doped and/or polycrystalline substrates, as well as on wafers with nanometric patterns indicate that, in the current state, the integration of UV- NLA into the industrial process is more complex than expected. Prospects for promoting the integration of UV-NLA are also discussed
Jou, Juann-Jann, und 周竣堅. „Enhanced Formation of C54-TiSi2 by and Interposing Mo Thin Layer between Ti and Si“. Thesis, 1997. http://ndltd.ncl.edu.tw/handle/69645195589226723108.
Der volle Inhalt der Quelle國立清華大學
材料科學工程學系
85
Interfacial reactions of non-ultrahigh vacuum deposited 30-nm-thick Ti films with an interposing 0.5-nm-thick Mo layer on (001)Si and implanted Si have been studied by transmission electron microscopy (TEMP), x-ray diffractometry, energy dispersion analysis of x-ary (EDAX) and secondary ion mass spectroscopy (SIMS). X-ray diffraction (XRD) and sheet resistance data revealed that C49- to C54-TiSi2 phase transformation occurred in 650℃ annealed samples. A Ti-Mo-Si ternary silicide was found to form. In the XRD spectra of the 650℃ annealed implated samples containing Mo, a ternary phase containing Ti, Mo and Si atoms was also found. Substantial amount of C54-TiSi2 phase already forms at this temperature. Therefore, with a thin interposing Mo layer, the formation temperature of C54-TiSi2 was lowered by about 100℃ compared to the what is usually needed for the C49- to C54-TiSi2 transformation. From EDAX and SIMS data, the redistribution of Mo atoms in TiSi2 layer was found. The enhancement of the formation of C54-TiSi2 is attributed to the presence of Mo atoms which provies more heterogeneous nucleation sites needed for the transformation from C49 to C54 phase. Effects of nitrogen ion implantation on TiSi2 contacts on shallow junctions have been investigated. Nitrogen ion implantation was found to suppress the B and As diffusion in silicon. For Ti on 30 keV BR+2 + 20 keV, 1 x 1015/cm2 N+2 implanted samples, a continuous low-resistivity TiSi2 layer was found to form in all samples annealed at 650-950℃ from TEM observations. For Ti on 20 keV, 1 x 1015/cm2 N+2 + 30 keV As+ implanted samples, end-of-range (EOR) defects were completely climinated in all samples annealed at 650-900℃. The results indicated that with appropriate control, a thin interposing Mo layer and N+2-implantation can be successfully implemented in forming low-resistivity TiSi2 contacts and enhancing the thermal stability of TiSi2 layer on shallow junctions in deep submicron devices. In a polycrystalline structure, grain boundary nucleation is generally the dominant mode. In the present study, the Mo atoms and/or the (Ti, Mo)Si2 ternary phase were proposed to provide more nucleation sites to enhance formation of C54-TiSi2. On the other hand, the effect of grain boundary for decreasing transformation temperature was found to be less crucial.
Jong, Huang,Guay, und 黃貴中. „Investigations on the oxidation kinetics and thermal stability of C54-TiSi2, NiSi2 and CoSi2 on Si substrate“. Thesis, 1994. http://ndltd.ncl.edu.tw/handle/32456334304539890743.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "C54-TiSi2"
QUILICI, SIMONA. „MICRO - RAMAN SPECTROSCOPY APPLIED TO MICROELECTRONICS: THE PHASE TRANSITION OF TiSi2 FROM C49 TO C54“. In Proceedings of the 16th Course of the International School of Solid State Physics. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792136_0021.
Der volle Inhalt der QuelleOkihara, M., K. Tai, M. Kageyama, Y. Harada, N. Hirashita und H. Onoda. „Transmission Electron Microscopic Study of TiSi2 Microstructures and the C49-C54 Phase Transformation in Narrow Lines“. In 1998 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1998. http://dx.doi.org/10.7567/ssdm.1998.a-7-2.
Der volle Inhalt der Quelle