Zeitschriftenartikel zum Thema „C-S bond formation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: C-S bond formation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "C-S bond formation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Xu, Yulong, Xiaonan Shi und Lipeng Wu. „tBuOK-triggered bond formation reactions“. RSC Advances 9, Nr. 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gao, Jian, Jie Feng und Ding Du. „Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis“. Chemistry – An Asian Journal 15, Nr. 22 (14.10.2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Modha, Sachin G., Vaibhav P. Mehta und Erik V. Van der Eycken. „Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview“. Chemical Society Reviews 42, Nr. 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian und Xin Ge. „Progress in the Formation of C-S Bond“. Chinese Journal of Organic Chemistry 37, Nr. 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jean, Mickaël, Jacques Renault, Pierre van de Weghe und Naoki Asao. „Gold-catalyzed C–S bond formation from thiols“. Tetrahedron Letters 51, Nr. 2 (Januar 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Choudhuri, Khokan, Milan Pramanik und Prasenjit Mal. „Noncovalent Interactions in C–S Bond Formation Reactions“. Journal of Organic Chemistry 85, Nr. 19 (25.08.2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui und Aiwen Lei. „Fe-catalysed oxidative C–H functionalization/C–S bond formation“. Chem. Commun. 48, Nr. 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stenfors, Brock A., Richard J. Staples, Shannon M. Biros und Felix N. Ngassa. „Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine“. Acta Crystallographica Section E Crystallographic Communications 76, Nr. 3 (28.02.2020): 452–55. http://dx.doi.org/10.1107/s205698902000208x.

Der volle Inhalt der Quelle
Annotation:
The molecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor und Xiaogang Liu. „Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation“. Chemical Society Reviews 44, Nr. 1 (2015): 291–314. http://dx.doi.org/10.1039/c4cs00239c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saidalimu, Ibrayim, Shugo Suzuki, Etsuko Tokunaga und Norio Shibata. „Successive C–C bond cleavage, fluorination, trifluoromethylthio- and pentafluorophenylthiolation under metal-free conditions to provide compounds with dual fluoro-functionalization“. Chemical Science 7, Nr. 3 (2016): 2106–10. http://dx.doi.org/10.1039/c5sc04208a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lv, Zongchao, Huamin Wang, Zhicong Quan, Yuan Gao und Aiwen Lei. „Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation“. Chemical Communications 55, Nr. 82 (2019): 12332–35. http://dx.doi.org/10.1039/c9cc05707b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ren, Rongguo, Zhen Wu und Chen Zhu. „Manganese-catalyzed regiospecific sp3C–S bond formation through C–C bond cleavage of cyclobutanols“. Chemical Communications 52, Nr. 52 (2016): 8160–63. http://dx.doi.org/10.1039/c6cc01843b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika und Pranjit Barman. „Gold nanoparticle catalyzed intramolecular C–S bond formation/C–H bond functionalization/cyclization cascades“. RSC Advances 5, Nr. 71 (2015): 57433–36. http://dx.doi.org/10.1039/c5ra10885c.

Der volle Inhalt der Quelle
Annotation:
An efficient synthesis of 2-(N-aryl)aminobenzo[d]-1,3-thiazoles via intramolecular C–S bond formation/C–H bond functionalization utilizing an unusual cocatalytic Au-NPs/KMnO4 system under an oxygen atmosphere at 80 °C is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae et al. „Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation“. Angewandte Chemie 132, Nr. 10 (23.01.2020): 4017–22. http://dx.doi.org/10.1002/ange.201916269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae et al. „Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation“. Angewandte Chemie International Edition 59, Nr. 10 (23.01.2020): 3988–93. http://dx.doi.org/10.1002/anie.201916269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wang, Min, Zhoujie Xie, Shoubin Tang, Ee Ling Chang, Yue Tang, Zhengyan Guo, Yinglu Cui, Bian Wu, Tao Ye und Yihua Chen. „Reductase of Mutanobactin Synthetase Triggers Sequential C–C Macrocyclization, C–S Bond Formation, and C–C Bond Cleavage“. Organic Letters 22, Nr. 3 (09.01.2020): 960–64. http://dx.doi.org/10.1021/acs.orglett.9b04501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Modha, Sachin G., Vaibhav P. Mehta und Erik V. Van der Eycken. „ChemInform Abstract: Transition Metal Catalyzed C-C Bond Formation via C-S Bond Cleavage: An Overview“. ChemInform 44, Nr. 36 (15.08.2013): no. http://dx.doi.org/10.1002/chin.201336215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yang, Daoshan, Kelu Yan, Wei Wei, Laijin Tian, Qinghe Li, Jinmao You und Hua Wang. „Metal-free n-Et4NBr-catalyzed radical cyclization of disulfides and alkynes leading to benzothiophenes under mild conditions“. RSC Adv. 4, Nr. 89 (2014): 48547–53. http://dx.doi.org/10.1039/c4ra08260e.

Der volle Inhalt der Quelle
Annotation:
The title reaction involves metal free TEAB-catalyzed S–S bond cleavage, C–S bond formation and C–C bond formation; it uses readily available disulfides and alkynes as substrates, and environmentally friendly TEAB as catalyst to synthesize useful benzothiophene derivatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Allen, F. H., C. M. Bird, R. S. Rowland und P. R. Raithby. „Resonance-Induced Hydrogen Bonding at Sulfur Acceptors in R 1 R 2C=S and R 1CS2 − Systems“. Acta Crystallographica Section B Structural Science 53, Nr. 4 (01.08.1997): 680–95. http://dx.doi.org/10.1107/s0108768197002656.

Der volle Inhalt der Quelle
Annotation:
The hydrogen-bond acceptor ability of sulfur in C=S systems has been investigated using crystallographic data retrieved from the Cambridge Structural Database and via ab initio molecular orbital calculations. The R1R2C=S bond lengths span a wide range, from 1.58 Å in pure thiones (R 1 = R 2 = Csp 3) to 1.75 Å in thioureido species (R 1 = R 2 = N) and in dithioates —CS^{-}_2. The frequency of hydrogen-bond formation at =S increases from 4.8% for C=S > 1.63 Å to more than 70% for C=S > 1.70 Å in uncharged species. The effective electronegativity of S is increased by conjugative interactions between C=S and the lone pairs of one or more N substituents (R 1 R 2): a clear example of resonance-induced hydrogen bonding. More than 80% of S in —CS^{-}_2 accept hydrogen bonds. C=S...H—N,O bonds are shown to be significantly weaker than their C=O...H—N,O analogues by (a) comparing mean S...H and O...H distances (taking account of the differing non-bonded sizes of S and O and using neutron-normalized H positions) and (b) comparing frequencies of hydrogen-bond formation in `competitive' environments, i.e. in structures containing both C=S and C=O acceptors. The directional properties and hydrogen-bond coordination numbers of C=S and C=O acceptors have also been compared. There is evidence for lone-pair directionality in both systems, but =S is more likely (17% of cases) than =O (4%) to accept more than two hydrogen bonds. Ab initio calculations of residual atomic charges and electrostatic potentials reinforce the crystallographic observations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Liu, Zijian, Kunbing Ouyang und Nianfa Yang. „The thiolation of pentafluorobenzene with disulfides by C–H, C–F bond activation and C–S bond formation“. Organic & Biomolecular Chemistry 16, Nr. 6 (2018): 988–92. http://dx.doi.org/10.1039/c7ob02836a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Sundaravelu, Nallappan, Subramani Sangeetha und Govindasamy Sekar. „Metal-catalyzed C–S bond formation using sulfur surrogates“. Organic & Biomolecular Chemistry 19, Nr. 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Der volle Inhalt der Quelle
Annotation:
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan und Aiwen Lei. „Radical–Radical Cross-Coupling for C–S Bond Formation“. Organic Letters 18, Nr. 10 (06.05.2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Li, Jianxiao, Shaorong Yang, Wanqing Wu und Huanfeng Jiang. „Recent developments in palladium-catalyzed C–S bond formation“. Organic Chemistry Frontiers 7, Nr. 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte und Devanand B. Shinde. „CuI catalyzed C S bond formation by using nitroarenes“. Catalysis Communications 41 (November 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Dong, Dao-Qing, Shuang-Hong Hao, Dao-Shan Yang, Li-Xia Li und Zu-Li Wang. „Sulfenylation of C-H Bonds for C-S Bond Formation under Metal-Free Conditions“. European Journal of Organic Chemistry 2017, Nr. 45 (28.08.2017): 6576–92. http://dx.doi.org/10.1002/ejoc.201700853.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhao, Jian-Nan, Muzaffar Kayumov, Dong-Yu Wang und Ao Zhang. „Transition-Metal-Free Aryl–Heteroatom Bond Formation via C–S Bond Cleavage“. Organic Letters 21, Nr. 18 (29.08.2019): 7303–6. http://dx.doi.org/10.1021/acs.orglett.9b02584.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sun, Kai, Yunhe Lv, Zhonghong Zhu, Liping Zhang, Hankui Wu, Lin Liu, Yongqing Jiang, Beibei Xiao und Xin Wang. „Oxidative C–S bond cleavage reaction of DMSO for C–N and C–C bond formation: new Mannich-type reaction for β-amino ketones“. RSC Advances 5, Nr. 4 (2015): 3094–97. http://dx.doi.org/10.1039/c4ra14249g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lanzi, Matteo, Jérémy Merad, Dina V. Boyarskaya, Giovanni Maestri, Clémence Allain und Géraldine Masson. „Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers“. Organic Letters 20, Nr. 17 (16.08.2018): 5247–50. http://dx.doi.org/10.1021/acs.orglett.8b02196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kaur, Navjeet. „Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles“. Journal of the Iranian Chemical Society 16, Nr. 12 (06.07.2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang, Rui, Huaiwei Ding, Xiangling Pu, Zhiping Qian und Yan Xiao. „Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates“. Catalysts 10, Nr. 11 (17.11.2020): 1339. http://dx.doi.org/10.3390/catal10111339.

Der volle Inhalt der Quelle
Annotation:
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui und Aiwen Lei. „ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation.“ ChemInform 43, Nr. 16 (22.03.2012): no. http://dx.doi.org/10.1002/chin.201216130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano und Giang Vo-Thanh. „Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions“. Asian Journal of Organic Chemistry 5, Nr. 7 (30.05.2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang und Aiwen Lei. „Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds“. Synlett 30, Nr. 10 (15.04.2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Der volle Inhalt der Quelle
Annotation:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhao, Binlin, Torben Rogge, Lutz Ackermann und Zhuangzhi Shi. „Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation“. Chemical Society Reviews 50, Nr. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Valentini, Federica, Oriana Piermatti und Luigi Vaccaro. „Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S, Se) Bond Formation“. Catalysts 13, Nr. 1 (22.12.2022): 16. http://dx.doi.org/10.3390/catal13010016.

Der volle Inhalt der Quelle
Annotation:
The direct functionalization of an inactivated C–H bond has become an attractive approach to evolve toward step-economy, atom-efficient and environmentally sustainable processes. In this regard, the design and preparation of highly active metal nanoparticles as efficient catalysts for C–H bond activation under mild reaction conditions still continue to be investigated. This review focuses on the functionalization of un-activated C(sp3)–H, C(sp2)–H and C(sp)–H bonds exploiting metal and metal oxide nanoparticles C–H activation for C–O and C–X (X = Halogen, B, P, S, Se) bond formation, resulting in more sustainable access to industrial production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Arisawa, Mieko, Kenji Fujimoto, Satoshi Morinaka und Masahiko Yamaguchi. „Equilibrating C−S Bond Formation by C−H and S−S Bond Metathesis. Rhodium-Catalyzed Alkylthiolation Reaction of 1-Alkynes with Disulfides“. Journal of the American Chemical Society 127, Nr. 35 (September 2005): 12226–27. http://dx.doi.org/10.1021/ja0527121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gogoi, Anupal, Srimanta Guin, Suresh Rajamanickam, Saroj Kumar Rout und Bhisma K. Patel. „Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C–N Bond Over C–S Bond Formation“. Journal of Organic Chemistry 80, Nr. 18 (09.09.2015): 9016–27. http://dx.doi.org/10.1021/acs.joc.5b00956.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor und Xiaogang Liu. „ChemInform Abstract: Recent Advances in C-S Bond Formation via C-H Bond Functionalization and Decarboxylation“. ChemInform 46, Nr. 15 (26.03.2015): no. http://dx.doi.org/10.1002/chin.201515296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika und Pranjit Barman. „ChemInform Abstract: Gold Nanoparticle Catalyzed Intramolecular C-S Bond Formation/C-H Bond Functionalization/Cyclization Cascades.“ ChemInform 46, Nr. 47 (November 2015): no. http://dx.doi.org/10.1002/chin.201547144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shin, Jeongcheol, Jiseon Lee, Jong-Min Suh und Kiyoung Park. „Ligand-field transition-induced C–S bond formation from nickelacycles“. Chemical Science 12, Nr. 48 (2021): 15908–15. http://dx.doi.org/10.1039/d1sc05113j.

Der volle Inhalt der Quelle
Annotation:
d–d excitations can accelerate C–S reductive eliminations of nickelacycles via intersystem crossing to a repulsive 3(C-to-Ni charge transfer) state inducing Ni–C bond homolysis. This homolytic photoreactivity is common for organonickel(ii) complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Jegelka, Markus, und Bernd Plietker. „Selective C−S Bond Formation via Fe-Catalyzed Allylic Substitution“. Organic Letters 11, Nr. 15 (06.08.2009): 3462–65. http://dx.doi.org/10.1021/ol901297s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Mitsudo, Koichi, Toki Yonezawa, Ren Matsuo und Seiji Suga. „Electrochemical Intramolecular C–S Bond Formation Leading to Thienoacene Derivatives“. ECS Meeting Abstracts MA2020-01, Nr. 43 (01.05.2020): 2507. http://dx.doi.org/10.1149/ma2020-01432507mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Chen, Lian, Ali Noory Fajer, Zhanibek Yessimbekov, Mosstafa Kazemi und Masoud Mohammadi. „Diaryl sulfides synthesis: copper catalysts in C–S bond formation“. Journal of Sulfur Chemistry 40, Nr. 4 (24.03.2019): 451–68. http://dx.doi.org/10.1080/17415993.2019.1596268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Seleznev, A. A., D. P. Radchenko, S. I. Golubova, S. A. Safronov und V. A. Navrotskiy. „SULFONYL CHLORIDES - NOVEL SOURCE OF FREE RADICALS“. IZVESTIA VOLGOGRAD STATE TECHNICAL UNIVERSITY, Nr. 12(259) (21.12.2021): 103–14. http://dx.doi.org/10.35211/1990-5297-2021-12-259-103-114.

Der volle Inhalt der Quelle
Annotation:
Novel free radicals source based on sulfonyl chlorides is discovered. The radical mechanism is confirmed by 2,3-dimethyl-2,3-diphenylbutane formation under chlorosulfonated polyethylene heating in the isopropylbenzene solution. Concerted homolytic C-S and S-Cl bond scission of chlorosulfonated polyethylene thermal degradation mechanism proved by kinetic analysis. The proof of the two bonds simultaneous breaking is provided by the threefold activation energy reduction (83 kJ/mol) in comparison to the C-S and C-Cl bond dissociation energy (280 and 286 kJ/mol respectively), the 6 orders lower preexponential factor (2,46 ∙ 10 s) in Arrhenius equation in comparison to one bond cleavage (≈10-10 s) as well as the strongly negative activation entropy value (-134 J/mol∙K).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Allen, F. H., C. M. Bird, R. S. Rowland und P. R. Raithby. „Hydrogen-Bond Acceptor and Donor Properties of Divalent Sulfur (Y-S-Z and R-S-H)“. Acta Crystallographica Section B Structural Science 53, Nr. 4 (01.08.1997): 696–701. http://dx.doi.org/10.1107/s0108768197002644.

Der volle Inhalt der Quelle
Annotation:
The hydrogen-bond acceptor ability of divalent sulfur in Y—S—Z systems, Y, Z= C, N, O or S, and the donor ability of thiol S—H have been studied using crystallographic data retrieved from the Cambridge Structural Database. Of 1811 Y—S—Z substructures that co-occur with N—H or O—H donors, only 86 (4.75%) form S...H—N,O bonds within S...H < 2.9 Å. In dialkylthioethers, the frequency of S...H bond formation is 6.24%, but drops below 3% when the alkyl groups are successively replaced by Csp 2 centres. This parallels an increasing \delta-positivity of S as calculated using ab initio methods. A similar frequency trend is observed for O...H—N,O bond formation by analogous oxyethers. Mean intermolecular >S...H distances for O—H [2.67 (3) Å] and N—H [2.75 (2) Å] donors (with H positions normalized to neutron values) are ca 0.25 Å longer than in C=S...H—N,O systems, indicative of very weak hydrogen bonding to >S. Intramolecular >S...H are slightly more frequent (8.56%), with S...H slightly shorter than for the intermolecular case. In contrast, 26 (70.3%) out of 37 S—H donors that co-occur with suitable acceptors form X...H—S bonds. The C=O...H—S system is predominant with a mean O...H distance of 2.34 (4) Å, considerably longer (weaker) than in C=O...H—O systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang und Dawei Ma. „Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation“. Angewandte Chemie International Edition 56, Nr. 51 (15.11.2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Anand, Devireddy, Yuwei He, Linyong Li und Lei Zhou. „A photocatalytic sp3 C–S, C–Se and C–B bond formation through C–C bond cleavage of cycloketone oxime esters“. Organic & Biomolecular Chemistry 17, Nr. 3 (2019): 533–40. http://dx.doi.org/10.1039/c8ob02987c.

Der volle Inhalt der Quelle
Annotation:
The photocatalytic sulfuration, selenylation and borylation of cycloketone oxime esters through iminyl radical-triggered C–C bond cleavage were described. The reactions provide a unified approach to alkyl sulfur, selenium and boron compounds tethered to a synthetically useful nitrile group.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. „RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis“. Angewandte Chemie 132, Nr. 19 (11.03.2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. „RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis“. Angewandte Chemie International Edition 59, Nr. 19 (11.03.2020): 7377–83. http://dx.doi.org/10.1002/anie.201915493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ngah, Nurziana, Nor Azanita Mohamed, Bohari M. Yamin und Hamizah Mohd Zaki. „3-[3-(2-Fluorobenzoyl)thioureido]propionic acid“. Acta Crystallographica Section E Structure Reports Online 70, Nr. 6 (24.05.2014): o705. http://dx.doi.org/10.1107/s1600536814011404.

Der volle Inhalt der Quelle
Annotation:
In the title compound, C10H11FN3O3S, the 2-fluorobenzoyl and proponic acid groups maintain atrans–cisconformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts ananticonformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intramolecular N—H...O and N—H...F hydrogen bonds. In the crystal, pairs of O—H...O hydrogen bonds link molecules into inversion dimers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie