Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „C-c bond forming processes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "C-c bond forming processes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "C-c bond forming processes"
Martín, Cristina del Mar García, José Ignacio Hernández García, Sebastián Bonardd und David Díaz Díaz. „Lignin-Based Catalysts for C–C Bond-Forming Reactions“. Molecules 28, Nr. 8 (16.04.2023): 3513. http://dx.doi.org/10.3390/molecules28083513.
Der volle Inhalt der QuelleValdés, Carlos, Raquel Barroso und María Cabal. „Pd-catalyzed Auto-Tandem Cascades Based on N-Sulfonylhydrazones: Hetero- and Carbocyclization Processes“. Synthesis 28, Nr. 19 (10.08.2017): 4434–47. http://dx.doi.org/10.1055/s-0036-1588535.
Der volle Inhalt der QuelleLiu, Jialin, Xiaoyu Xiong, Jie Chen, Yuntao Wang, Ranran Zhu und Jianhui Huang. „Double C–H Activation for the C–C bond Formation Reactions“. Current Organic Synthesis 15, Nr. 7 (16.10.2018): 882–903. http://dx.doi.org/10.2174/1570179415666180720111422.
Der volle Inhalt der QuelleTodd, David P., Benjamin B. Thompson, Alex J. Nett und John Montgomery. „Deoxygenative C–C Bond-Forming Processes via a Net Four-Electron Reductive Coupling“. Journal of the American Chemical Society 137, Nr. 40 (05.10.2015): 12788–91. http://dx.doi.org/10.1021/jacs.5b08448.
Der volle Inhalt der QuelleCorrea, Arkaitz, und Marcos Segundo. „Cross-Dehydrogenative Coupling Reactions for the Functionalization of α-Amino Acid Derivatives and Peptides“. Synthesis 50, Nr. 15 (25.06.2018): 2853–66. http://dx.doi.org/10.1055/s-0037-1610073.
Der volle Inhalt der QuelleDaoust, Benoit, Nicolas Gilbert, Paméla Casault, François Ladouceur und Simon Ricard. „1,2-Dihaloalkenes in Metal-Catalyzed Reactions“. Synthesis 50, Nr. 16 (09.07.2018): 3087–113. http://dx.doi.org/10.1055/s-0037-1610174.
Der volle Inhalt der QuelleTodd, David P., Benjamin B. Thompson, Alex J. Nett und John Montgomery. „ChemInform Abstract: Deoxygenative C-C Bond-Forming Processes via a Net Four-Electron Reductive Coupling.“ ChemInform 47, Nr. 12 (März 2016): no. http://dx.doi.org/10.1002/chin.201612061.
Der volle Inhalt der QuelleBuzzetti, Luca, Alexis Prieto, Sudipta Raha Roy und Paolo Melchiorre. „Radical-Based C−C Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-dihydropyridines“. Angewandte Chemie 129, Nr. 47 (24.10.2017): 15235–39. http://dx.doi.org/10.1002/ange.201709571.
Der volle Inhalt der QuelleBuzzetti, Luca, Alexis Prieto, Sudipta Raha Roy und Paolo Melchiorre. „Radical-Based C−C Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-dihydropyridines“. Angewandte Chemie International Edition 56, Nr. 47 (24.10.2017): 15039–43. http://dx.doi.org/10.1002/anie.201709571.
Der volle Inhalt der QuelleBuchspies, Jonathan, Md Mahbubur Rahman und Michal Szostak. „Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes“. Molecules 26, Nr. 1 (02.01.2021): 188. http://dx.doi.org/10.3390/molecules26010188.
Der volle Inhalt der QuelleDissertationen zum Thema "C-c bond forming processes"
Das, Sajal. „Investigations on synthetic organic transformations : application to C-C and C-N bond forming processes“. Thesis, University of North Bengal, 2007. http://hdl.handle.net/123456789/1146.
Der volle Inhalt der QuelleReeds, Jonathan P. „Exploiting imidate ligand effects in transition metal-mediated C-C bond forming processes“. Thesis, University of York, 2010. http://etheses.whiterose.ac.uk/1240/.
Der volle Inhalt der QuelleYang, Yang Ph D. Massachusetts Institute of Technology. „New reactivity and selectivity in transition metal-catalyzed C-C and C-N bond forming processes“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101558.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. Volume 1 (page 1 to page 510) ; Volume 2 (page 511 to 881). Duplicated pages for pages 195 to 240 are bound after page 881.
Includes bibliographical references.
Part I. Palladium-Catalyzed Carbon-Carbon Bond Forming Cross-Couplings Chapter 1. Ligand-Controlled Palladium-Catalyzed Regiodivergent Suzuki-Miyaura Cross-Coupling of Allylboronates and Aryl Halides An orthogonal set of catalyst systems based on the use of two biarylphosphine ligands has been developed for the Suzuki-Miyaura coupling of 3,3-disubstituted and 3-monosubstituted allylboronates with (hetero)aryl halides. These methods allow for the regiodivergent preparation of either the ct- or the [gamma]-isomeric coupling product with high levels of site selectivity using a common allylboron building block. Preliminary investigations have demonstrated the feasibility of an enantioselective variant for the [gamma]-selective cross-coupling using chiral monodentate biarylphosphine ligands. Chapter 2. Palladium-Catalyzed Completely Linear-Selective Negishi Coupling of 3,3-Disubstituted Organozinc Reagents with Aryl and Vinyl Electrophiles A palladium-catalyzed general and completely linear-selective Negishi coupling of 3,3- disubstituted allyl organozinc reagents with (hetero)aryl and vinyl electrophiles has been developed. This method provided an effective means for accessing highly functionalized aromatic and heteroaromatic compounds bearing prenyl-type side chains. The utility of the current protocol was further illustrated in the concise synthesis of the anti-HIV natural product siamenol. Chapter 3. Palladium-Catalyzed Highly Selective Negishi Cross-Coupling of Secondary Alkylzinc Reagents with Aryl and Heteroaryl Halides The palladium-catalyzed Negishi cross-coupling of secondary alkylzinc reagents and heteroaryl halides with high levels of regioisomeric retention has been described. The development of a series of biarylphosphine ligands has led to the identification of an improved catalyst for the coupling of electron-deficient heterocyclic substrates. Preparation and characterization of oxidative addition complex (L)Pd(Ar)(Br) provided insight into the unique reactivity of palladium catalysts based on CPhos-type biarylphosphine ligands in facilitating challenging reductive elimination processes. Chapter 4. Mechanistic Studies on the Aryl-Trifluoromethyl Reductive Elimination from Pd(II) Complexes Based on Biarylphosphine Ligands A series of monoligated (L)Pd(Ar)(CF₃) (L = dialkyl biarylphosphine) have been prepared and studied in an effort to shed light on the mechanism of the aryl-trifluoromethyl reductive elimination from these systems. Combined experimental and computational investigations revealed unique reactivity and binding modes of (L)Pd(Ar)(CF₃) complexes derived from BrettPhos-type biarylphosphines. In contrast to a variety of C-C and C-heteroatom bond forming reductive eliminations, kinetic measurements showed this Ar-CF₃ reductive elimination is largely insensitive to the electronic nature of the to-be-eliminated aryl substituent. Furthermore, the aryl group serves as the nucleophilic coupling partner in this reductive elimination process. The structure-reactivity relationship of biarylphosphine ligands was also investigated, uncovering distinct roles of the ipso-arene and alkoxy interactions in affecting these reductive elimination reactions. Part II. Copper-Catalyzed Carbon-Carbon and Carbon-Nitrogen Bond Formation via Olefin Functionalization Chapter 5. Copper-Catalyzed ortho C-H Cyanation of Vinylarenes A copper-catalyzed regioselective ortho C-H cyanation of vinylarenes has been developed. This method provides an effective means for the selective functionalization of vinylarene derivatives. A copper-catalyzed cyanative dearomatization mechanism is proposed to account for the regiochemical course of this reaction. This mechanism has been validated through density functional theory calculations. Computational studies revealed that the high level of ortho selectivity in the electrophilic cyanation event originates from a unique six-membered transition state that minimizes unfavorable steric repulsions. Chapter 6. Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/ortho-Cyanation Cascade A copper-catalyzed borylation/cyanation/allyl group transfer cascade has been developed. This process features an unconventional copper-catalyzed electrophilic dearomatization followed by the subsequent regio- and stereospecific 1,3-transposition of the allyl fragment enabled by the aromatization-driven Cope rearrangement. This method provides an effective means for the construction of adjacent tertiary and quaternary stereocenters with high levels of stereochemical purity. Chapter 7. Copper-Catalyzed Asymmetric Hydroamination of Unactivated Internal Olefins: an Effective Means to Access Highly Enantioenriched Aliphatic Amines Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. We describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins-an important yet unexploited class of abundant feedstock chemicals-into highly enantioenriched [alpha]-branched amines (>/= 96% ee) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.
by Yang Yang.
Ph. D. in Organic Chemistry
Perry, Ian B. (Ian Brooks). „Transition metal-facilitated C-C and C-F bond forming“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112449.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. "June 2017."
Includes bibliographical references.
Chapter 1. Copper-Catalyzed Asymmetric Addition of Olefin-Derived Nucleophiles to Ketones A copper (I) catalyzed coupling olefins and ketones has been developed for the diastereo- and enantioselective generation of homopropargyl alcohols bearing vicinal stereocenters. This method allows for the generation of enantioenriched tertiary alcohols with a high degree of functional group compatibility. The utility of the process is further illustrated by a large scale synthesis with extremely low catalyst loading as well as the late stage modification of several pharmaceuticals. Chapter 2. Copper-Catalyzed Enantioselective Addition of Styrene-Derived Nucleophiles to Imines We describe the catalytic generation of amines bearing vicinal stereocenters with a moderate degree of diastereoselectivity. The stereoselective hydrocupration of an unactivated olefinic component is followed by nucleophilic addition of the organocuprate to an N-phosphinoyl protected imine. The mild and general process tolerates a broad-range of functionality, and the process was shown to be successful at a gram-scale synthesis. Chapter 3. Palladium-facilitated Regioselective Nucleophilic Fluorination of Aryl and Heteroaryl Halides. The preliminary findings regarding an aryl and heteroaryl halide fluorination process facilitated by palladium as a reagent is described. Stoichiometric studies illustrate the utility of the method in producing aryl fluorides with unprecedented regioselectivity, and preliminary studies into the fluorination of five- and six-membered heteroaryl bromides are described. Halogen atom substitution as a route to irreversible oxidative addition of aryl and heteroaryl halides is discussed. This strategy may serve to facilitate the fluorination of particularly problematic heteroaryl bromide and chloride substrates.
by Ian B. Perry.
S.B.
Mudarra, Alonso Ángel Luis. „Coinage complexes in C-C and C-N bond-forming reactions“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670357.
Der volle Inhalt der QuelleLos complejos organometálicos de cobre, plata y oro juegan un papel fundamental como especies reactivas en diversas transformaciones químicas. Esta tesis aporta conocimiento sobre el comportamiento de estos complejos en la formación de enlaces C-C y/o C-N. En concreto, estudiamos: i) el mecanismo de reacción por el cual complejos de cobre co-catalizan un acoplamiento oxidante en el contexto de sistemas bimetálicos de rodio y cobre; ii) el potencial de nucleófilos de plata como agentes transmetalantes en reacciones de trifluorometilación catalizadas por paladio; iii) el mecanismo de reacción de sistemas bimetálicos de Pd/Ag usando un sistema modelo; y iv) el comportamiento de complejos bis(trifluorometil) cuprato, argentato y aurato como nucleófilos. En esta tesis, donde se han combinado estudios experimentales y computacionales, se ha adquirido nuevo conocimiento sobre los procesos estudiados, y se ha contribuido al campo de la investigación química basada en el conocimiento.
Organometallic coinage metal complexes are be key reactive species for promoting a wide variety of chemical transformations. This thesis improves the understanding the behavior of these complexes in relevant C-C and/or C-N bond-forming reactions. Specifically, we have explored: i) the mechanistic intricacies of copper species as co-catalyst in the context of rhodium/copper-catalyzed oxidative coupling reactions; ii) the capability of silver nucleophiles as transmetalating agents in palladium-catalyzed trifluoromethylation reactions; iii) the reaction mechanism of Pd/Ag bimetallic reactions using a model system as probe; and, iv) the study of bis(trifluoromethyl) coinage metallates as nucleophiles. The fundamental insights gathered in this Thesis, encompassing both experimental and computational approaches, improve our understanding of the processes under study and make a contribution to the general field of knowledge-driven research in Chemistry.
Kanuru, Vijaykumar. „Understanding surface mediated C-C and C-N bond forming reactions“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608956.
Der volle Inhalt der QuellePilarski, Lukasz T. „Palladacycles for non-redox C-C bond forming reactions“. Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495644.
Der volle Inhalt der QuelleLomas, Sarah. „C-C bond forming catalysis with alkaline earth acetylides“. Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604644.
Der volle Inhalt der QuelleVarma, Sreejith Jayasree. „Mimicking C-C bond forming reactions of core metabolism“. Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF038/document.
Der volle Inhalt der QuelleAll life forms continuously build up and break down its constituent chemical building blocks, through an energy consuming process called metabolism. Just like a hurricane’s dynamic patterns and its building blocks (air and water) as being equally fundamental to its nature, so too should metabolism’s dynamic chemical patterns and chemical building blocks be viewed as equally characteristic. Traditionally, much chemical research on the origins of life is overly focused on the synthesis of chemical building blocks without sufficiently appreciating their place in life’s larger biochemical self-organization. Life ultimately builds all of its molecules from carbon dioxide, yet it is surprisingly lacking in innovation in this respect. Despite nearly 4 billion years of evolution, autotrophic organisms use only six pathways to build their molecules from CO2. Two of these pathways – the acetyl CoA pathway (also known as the Wood-Ljungdahl pathway) and rTCA cycle (also known as the reverse Krebs cycle) - are thought to be ancestral, with just five molecules within them serving as the universal chemical precursors for all of biochemistry. How and why did these pathways get their start? To answer this question, a systematic search was designed to find simple, non-enzymatic chemical or mineral catalysts and reagents, that can promote the reactions of core anabolism, particularly the acetyl CoA pathway and the rTCA cycle. After finding as many ways as possible to promote each reaction, they could be narrowed down to mutually compatible conditions where many reactions can occur in sequence. The more of core anabolism that can be achieved under a single set of purely chemical conditions, the more likely it is to have constituted early prebiotic chemistry rather than a later product of chemical and biological evolution
Wolfe, John P. (John Perry) 1970. „Late transition metal catalyzed C-N and C-C bond forming reactions“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9521.
Der volle Inhalt der QuelleIncludes bibliographical references.
New methods for the palladium-catalyzed amination of aryl halides are described. Key to these is the development of new catalysts and reaction conditions for these transformations. Initially, P(o-tol)3 ligated palladium catalysts were investigated but gave way to systems that used chelating phosphine ligands which substantially expanded the scope of the catalytic amination methodology. Palladium catalyst systems based on BINAP ((2,2'-diphenylphosphino)-1, 1 '-binaphthyl) allowed for the transformation of a much wider range of amines and aryl halide substrates, as well as aryl triflates. Of practical significance was that the use of cesium carbonate as a base at 100 °C substantially increased the functional group tolerance of the method. Palladium catalysts supported by novel, bulky, electron-rich phosphine ligands are exceptionally effective in the C-N, C-0, and C-C coupling procedures. For some substrate combinations, these palladium catalysts are effective for the room-temperature catalytic amination of aryl chlorides. These palladium catalysts are also highly effective for Suzuki coupling reactions of aryl bromides and chlorides at room temperature. Suzuki coupling reactions of aryl bromides and aryl chlorides are effective at very low catalyst loadings (0.000001-0.005 mol % Pd for ArBr, 0.02-0.05 mol % for ArCI) at 100 °C, and reactions of hindered aryl halides or boronic acids are effected at moderate catalyst loadings (1 mol % Pd). The high reactivity of these catalysts towards aryl chlorides challenges the conventional dogma that chloride substrates cannot be transformed under mild conditions with palladium catalysts, and significantly expands the pool of substrates available for cross-coupling chemistry.
by John P. Wolfe.
Ph.D.
Bücher zum Thema "C-c bond forming processes"
Mahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Dordrecht: Springer Science+Business Media B.V., 2011.
Den vollen Inhalt der Quelle findenMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2013.
Den vollen Inhalt der Quelle findenMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2016.
Den vollen Inhalt der Quelle findenARSHAD, NUZHAT. C-P and C-C Bond Forming Reactions Based on Carbostyrils and Thioamide: Phosphine Ligands and Thioamide Derivatives. VDM Verlag Dr. Müller, 2010.
Den vollen Inhalt der Quelle findenAndersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenAndersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenAndersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Limited, John, 2012.
Den vollen Inhalt der Quelle findenAndersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenAnjum, Rani Lill, und Stephen Mumford. Mutual Manifestation and Martin’s Two Triangles. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198796572.003.0006.
Der volle Inhalt der QuelleTrieloff, Mario. Noble Gases. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190647926.013.30.
Der volle Inhalt der QuelleBuchteile zum Thema "C-c bond forming processes"
Dana, Suman, M. Ramu Yadav und Akhila K. Sahoo. „Ruthenium-Catalyzed C−N and C−O Bond-Forming Processes from C−H Bond Functionalization“. In C-H Bond Activation and Catalytic Functionalization I, 189–215. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_126.
Der volle Inhalt der QuelleTakizawa, Shinobu, und Hiroaki Sasai. „Metal-Catalyzed Enantio- and Diastereoselective C-C Bond-Forming Reactions in Domino Processes“. In Domino Reactions, 419–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671304.ch11.
Der volle Inhalt der QuelleHilterhaus, Lutz, und Andreas Liese. „Industrial Application and Processes Forming CO Bonds“. In Enzyme Catalysis in Organic Synthesis, 503–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch12.
Der volle Inhalt der QuelleZhdankin, Viktor V. „C-C-Bond Forming Reactions“. In Hypervalent Iodine Chemistry, 99–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_4.
Der volle Inhalt der QuelleShimizu, Masaki. „CC Bond-Forming Coupling Reactions“. In Transition-Metal-Mediated Aromatic Ring Construction, 571–616. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118629871.ch22.
Der volle Inhalt der QuelleBonne, Damien, Thierry Constantieux, Yoann Coquerel und Jean Rodriguez. „Cascade Reactions Forming Both C-C Bond and C-Heteroatom BOND“. In Stereoselective Organocatalysis, 559–85. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch16.
Der volle Inhalt der QuelleKoser, Gerald F. „C-Heteroatom-Bond Forming Reactions“. In Hypervalent Iodine Chemistry, 137–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_5.
Der volle Inhalt der QuelleSako, Makoto, Shinobu Takizawa und Hiroaki Sasai. „Chapter 18. Vanadium-catalyzed Enantioselective C–C Bond-forming Reactions“. In Catalysis Series, 446–63. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160882-00446.
Der volle Inhalt der QuelleEchavarren, Antonio M., und Anna Homs. „Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond Forming Reactions“. In Metal-Catalyzed Cross-Coupling Reactions and More, 1–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655588.ch1.
Der volle Inhalt der QuelleKlei, Steven R., Kian L. Tan, Jeffrey T. Golden, Cathleen M. Yung, Reema K. Thalji, Kateri A. Ahrendt, Jonathan A. Ellman, T. Don Tilley und Robert G. Bergman. „C—H Bond Activation by Iridium and Rhodium Complexes: Catalytic Hydrogen—Deuterium Exchange and C—C Bond-Forming Reactions“. In ACS Symposium Series, 46–55. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.ch002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "C-c bond forming processes"
Seiler, P., J. Rösler, D. Mukherji und T. Kopka. „Thermal Barrier Coatings on Novel High Temperature Cobalt Rhenium Substrates“. In ITSC2011, herausgegeben von B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0926.
Der volle Inhalt der QuelleGulizia, S., B. Tiganis, M. Z. Jahedi, N. Wright, T. Gengenbach und C. MacRae. „Effects of Cold Spray Process Gas Temperature on CP Titanium Structure“. In ITSC2009, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0237.
Der volle Inhalt der QuelleHuang, Lingfeng, Jianming Liu, Xuying Cheng, Deming Zhang und Yueguang Yu. „The Structure and Oxidation Resistance Behavior of Ni-CrAlY Coatings Prepared by Plating Process“. In ITSC2018, herausgegeben von F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau und J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0557.
Der volle Inhalt der QuelleSakimoto, Takahiro, Tsunehisa Handa, Hisakazu Tajika, Yoshiaki Murakami und Joe Kondo. „Effect of Tensile Pre-Strain on Collapse Pressure of Coated Linepipe“. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95923.
Der volle Inhalt der QuelleWang, Xueqiang, Joan G. Donaire und Ruben Martin. „Metal-Free sp2 and sp3 C-H Functionalization/C-O Bond Forming Reaction“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013815132216.
Der volle Inhalt der QuelleSakimoto, Takahiro, Hisakazu Tajika, Tsunehisa Handa, Yoshiaki Murakami, Satoshi Igi und Joe Kondo. „Collapse Resistance Under Combined External Pressure and Bending Deformation of Coated Linepipe“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18250.
Der volle Inhalt der QuelleGanapathy, D., und G. Sekar. „An efficient and reusable palladium nanocatalyst in C-C bond forming cross-coupling reactions“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_201386477.
Der volle Inhalt der QuelleKang, Bruce S., und Changyu Ma. „Development of ODS Coating for Critical Turbine Components Using DED Additive Manufacturing“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14874.
Der volle Inhalt der QuelleBennett, Christianna. „Severing Ties: A Pedagogy for Envisioning New Typologies of Environmentally-Attuned Architecture“. In 112th ACSA Annual Meeting. ACSA Press, 2024. http://dx.doi.org/10.35483/acsa.am.112.31.
Der volle Inhalt der QuelleZafred, Paolo R., Shay L. Harrison und Jeffrey J. Bolebruch. „Development and Testing of High Purity Alumina Ceramics for SOFC Stack Components“. In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33316.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "C-c bond forming processes"
Botulinum Neurotoxin-Producing Clostridia, Working Group on. Report on Botulinum Neurotoxin-Producing Clostridia. Food Standards Agency, August 2023. http://dx.doi.org/10.46756/sci.fsa.ozk974.
Der volle Inhalt der Quelle