Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bulk heterojunction organic solar cell“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bulk heterojunction organic solar cell" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bulk heterojunction organic solar cell"
Haque, A., F. Sultana, M. A. Awal und M. Rahman. „Efficiency Improvement of Bulk Heterojunction Organic Photovoltaic Solar Cell through Device Architecture Modification“. International Journal of Engineering and Technology 4, Nr. 5 (2012): 567–72. http://dx.doi.org/10.7763/ijet.2012.v4.434.
Der volle Inhalt der QuelleDeibel, Carsten, Vladimir Dyakonov und Christoph J. Brabec. „Organic Bulk-Heterojunction Solar Cells“. IEEE Journal of Selected Topics in Quantum Electronics 16, Nr. 6 (November 2010): 1517–27. http://dx.doi.org/10.1109/jstqe.2010.2048892.
Der volle Inhalt der QuelleCheng, Pei, Cenqi Yan, Yang Wu, Shuixing Dai, Wei Ma und Xiaowei Zhan. „Efficient and stable organic solar cells via a sequential process“. Journal of Materials Chemistry C 4, Nr. 34 (2016): 8086–93. http://dx.doi.org/10.1039/c6tc02338j.
Der volle Inhalt der QuelleArbab, Elhadi A. A., Bidini A. Taleatu und Genene Tessema Mola. „Ternary molecules blend organic bulk heterojunction solar cell“. Materials Science in Semiconductor Processing 40 (Dezember 2015): 158–61. http://dx.doi.org/10.1016/j.mssp.2015.06.057.
Der volle Inhalt der QuelleMajumder, Chandrachur, Akansha Rai und Chayanika Bose. „Performance optimization of bulk heterojunction organic solar cell“. Optik 157 (März 2018): 924–29. http://dx.doi.org/10.1016/j.ijleo.2017.11.114.
Der volle Inhalt der QuelleIsmail, Yasser A. M., T. Soga und T. Jimbo. „Investigation of PCBM Concentration on the Performance of Small Organic Solar Cell“. ISRN Renewable Energy 2012 (16.08.2012): 1–8. http://dx.doi.org/10.5402/2012/385415.
Der volle Inhalt der QuelleWidmer, Johannes, Karl Leo und Moritz Riede. „Temperature dependent behavior of flat and bulk heterojunction organic solar cells“. MRS Proceedings 1493 (2013): 269–73. http://dx.doi.org/10.1557/opl.2013.101.
Der volle Inhalt der QuelleTrindade, A. J., und L. Pereira. „Bulk Heterojunction Organic Solar Cell Area-Dependent Parameter Fluctuation“. International Journal of Photoenergy 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/1364152.
Der volle Inhalt der QuelleKronenberg, Nils M. „Optimized solution-processed merocyanine:PCBM organic bulk heterojunction solar cell“. Journal of Photonics for Energy 1, Nr. 1 (01.01.2011): 011101. http://dx.doi.org/10.1117/1.3528043.
Der volle Inhalt der QuelleKesinro, R. O., A. O. Boyo, M. L. Akinyemi und G. T. Mola. „Fabrication of P3HT: PCBM bulk heterojunction organic solar cell“. IOP Conference Series: Earth and Environmental Science 331 (16.10.2019): 012028. http://dx.doi.org/10.1088/1755-1315/331/1/012028.
Der volle Inhalt der QuelleDissertationen zum Thema "Bulk heterojunction organic solar cell"
Sahare, Swapnil Ashok. „Enhancing the Photovoltaic Efficiency of a Bulk Heterojunction Organic Solar Cell“. TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1609.
Der volle Inhalt der QuelleZhou, Xuan. „Structural engineering of porphyrin small molecules for bulk heterojunction organic solar cell applications“. HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/563.
Der volle Inhalt der QuelleLiu, Jiang. „P3HT:PCBM Bulk Heterojunction Organic Solar Cell : Performance Optimization and Application of Inkjet Printing“. Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14987.
Der volle Inhalt der QuelleOrganic solar cells have emerged as an important cheap photovoltaic technology. In this thesis work, a study of P3HT:PCBM heterojunction solar cells was presented. By incorporation of photo-active film slow growth, PEDOT:PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) de-water treatment and application of highly conductive PEDOT:PSS (HC-PEDOT), a maximum PCE (power conversion efficiency) of 4% was achieved.
Inkjet printing technique was on the other hand introduced into fabrication process. The morphological, electrical and optical properties of printed HC-PEDOT were investigated. Fine silver girds with well-designed pattern, combining with a transparent thin film of HC-PEDOT, was inkjet-printed to form the anode of solar cells. A functional device with printed anode and printed photo-active layer was demonstrated, showing the possibility of realizing fully printed organic solar cells.
Augustine, B. (Bobins). „Efficiency and stability studies for organic bulk heterojunction solar cells“. Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214436.
Der volle Inhalt der QuelleTiivistelmä Orgaanisten heteroliitosaurinkokennojen kerrosrakenteen ominaisuudet ja laatu vaikuttavat merkittävästi aurinkokennojen toiminnallisuuteen. Erityisesti rakenteelliset epähomogeenisuudet aktiivi- ja puskurikerroksissa heikentävät kennon hyötysuhdetta. Kennojen stabiilisuutta tarkasteltaessa myös mekaanisella rasituksella, pitkittyneellä lämpöaltistuksella ja materiaalien reagoinneilla keskenään kerrosten välillä, on selkeä negatiivinen vaikutus kennojen stabiilisuuteen. Orgaanisen aurinkokennoteknologian kaupallistamisen rajoitteina ovat kennojen heikko hyötysuhde ja stabiilisuus, joten menetelmät jotka tarjoavat ratkaisuja edellä mainittuihin ongelmiin, ovat erittäin tärkeitä teknologiaa kaupallistavalle teollisuudelle. Tämä väitöskirja keskittyy johdonmukaisesti selvittämään tapoja, joilla voidaan parantaa heteroliitosaurinkokennojen hyötysuhdetta ja elinikää. Hyötysuhteen tehostamiseksi valittiin kaksi eri lähestymistapaa, joista ensimmäisessä keskityttiin aktiivikerroksen morfologian parantamiseen ja toisessa aukkoja kuljettavan kerroksen sähköisten ominaisuuksien parantamiseen lämpökäsittelyprosessin avulla. Sopivan lisäaineen avulla aktiivikerroksen ei-toivottua kiteytymistä voidaan pienentää ja parantaa näin kerroksen morfologiaa. Lisäksi työssä todettiin, että lämpökäsittelyn aikaisella ympäristöolosuhteella (ilma, typpi, tyhjiö) on merkittävä vaikutus puskurikerroksen optimaaliseen toimintaan aurinkokennossa. Stabiilisuuden parantamiseksi kehitettiin välikerroksen hyödyntämiseen perustuva menetelmä, jolla voidaan tehokkaasti vähentää kennojen sisäisessä rakenteessa tapahtuvaa toiminnallisuuden heikkenemistä, joka aiheutuu aukkoja kuljettavan kerroksen syövyttävästä vaikutuksesta indiumtinaoksidi (ITO) pohjaiseen anodiin. Tämän lisäksi työssä tutkittiin kokeellisesti stabiilisuuteen heikentävästi vaikuttavia tekijöitä, kuten mekaanisen rasituksen aiheuttamia vaurioita metallioksidi (ITO) anodissa ja lämpöaltistuksesta aiheutuvia vikoja polymeeri-fullereeni rakenteeseen perustuvassa aktiivikerroksessa. Tutkimuksen keskeisin tulos on, että esitellyt keinot aurinkokennojen hyötysuhteen ja stabiilisuuden parantamiseen ovat edullisia, tehokkaita ja helppoja hyödyntää. Tulokset voivat merkittävästi edistää orgaanisten aurinkokennojen teknistä kehitystä ja kiihdyttää niiden tuloa kaupallisiksi tuotteiksi
Lan, Weixia. „Light harvesting and charge collection in bulk heterojunction organic solar cells“. HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/318.
Der volle Inhalt der QuelleTessarolo, Marta <1985>. „Organic Bulk Heterojunction Solar Cells: Materials Properties Device Stability And Performance“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7266/1/Tesi_PhD_Marta_Tessarolo.pdf.
Der volle Inhalt der QuelleTessarolo, Marta <1985>. „Organic Bulk Heterojunction Solar Cells: Materials Properties Device Stability And Performance“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7266/.
Der volle Inhalt der QuelleHan, Tianyan. „Bulk heterojunction solar cells based on solution-processed triazatruxene derivatives“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD036/document.
Der volle Inhalt der QuelleThe prospective conception of electron-donor/electron-acceptor (D/A) bulk heterojunction solar cells was first reported in 1990s, which blended the semiconducting polymer with fullerene derivatives, enhancing the power conversion efficiency. Since then, interests on this domain has been increasing continuously, and the efficiencies of BHJ solar cells have been increased dramatically. In this context, this thesis focuses on the study of a series of dumbbell-shaped small molecule donors, based on a highly planar unit called triazatruxene. The only difference between those molecules is the side-chains attached to central units and TAT units. As a consequence, the relationship between side chains nature and optoelectronic and structural properties of our TAT-based dumbbell-shaped molecular architecture will be investigated in detail. The impact of the alkyl chains on the molecular and thin film properties was also studied, with a particular emphasis put on microstructure and charge transport aspects. In-plane and out-of-plane charge carrier transport, with pure molecules and blend with fullerene, are measured in different systems. BHJ solar cells in blend with fullerene derivatives were also realized
SALAMANDRA, LUIGI. „Organic photo-voltaic cells and photo-detectors based on polymer bulk-heterojunctions“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1294.
Der volle Inhalt der QuelleIn the last few decades, the use of organic materials for the realization of electronic devices has gained the attention of many research groups. This is mainly due to the possibility to use low-cost techniques for fabrication as solution-processing, suitable also to flexible substrates, and to tailor the material properties for specific applications. In the field of optoelectronics, the use of such materials for the realization of light sources (OLED, Organic Light-Emitting Diode, or OTFL, Organic Thin-Film Lasers), photo-diodes and solar cells has already been demonstrated. In this context, the combination of different organic devices for integrated optical systems, can pave the way to new applications in the field of data communication, sensing application, imaging and solar energy. Conjugated polymer bulk-heterojunction photo-voltaic device made from blend solution could be a good promise for solar energy conversion and data communication purpose, with its solar conversion efficiencies up to ~5% and a time-resolved response of ~200KHz to an optical source.
Schilinsky, Pavel. „Loss analysis of the power conversion efficiency of organic bulk heterojunction solar cells“. [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975187546.
Der volle Inhalt der QuelleBuchteile zum Thema "Bulk heterojunction organic solar cell"
Liu, Jianhua, Bright Walker und Thuc-Quyen Nguyen. „Solution-Processed Molecular Bulk Heterojunction Solar Cells“. In Organic Photovoltaics, 95–138. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch04.
Der volle Inhalt der QuelleTress, Wolfgang. „Simulation Study on Single-Layer Bulk-Heterojunction Solar Cells“. In Organic Solar Cells, 277–312. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10097-5_5.
Der volle Inhalt der QuelleDuan, Chunhui, Chengmei Zhong, Fei Huang und Yong Cao. „Interface Engineering for High Performance Bulk-Heterojunction Polymeric Solar Cells“. In Organic Solar Cells, 43–79. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_3.
Der volle Inhalt der QuelleTroshin, Pavel A., und Niyazi Serdar Sariciftci. „Organic nanomaterials for efficient bulk heterojunction solar cells“. In Organic Nanomaterials, 549–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118354377.ch25.
Der volle Inhalt der QuelleBrabec, Christoph J. „Semiconductor Aspects of Organic Bulk Heterojunction Solar Cells“. In Organic Photovoltaics, 159–248. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05187-0_5.
Der volle Inhalt der QuelleKirchartz, Thomas, und Jenny Nelson. „Device Modelling of Organic Bulk Heterojunction Solar Cells“. In Topics in Current Chemistry, 279–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/128_2013_473.
Der volle Inhalt der QuelleDuan, Chun-Hui, Fei Huang, Yong Cao, Niyazi Serdar Sariciftci, Yongfang Li, Guillermo C. Bazan und Xiong Gong. „Organic Materials and Chemistry for Bulk Heterojunction Solar Cells“. In Organic Chemistry - Breakthroughs and Perspectives, 643–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527664801.ch17.
Der volle Inhalt der QuelleWetzelaer, Gert-Jan A. H., L. Jan Anton Koster und Paul W. M. Blom. „Bimolecular and Trap-Assisted Recombination in Organic Bulk Heterojunction Solar Cells“. In Organic Photovoltaics, 343–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch11.
Der volle Inhalt der Quellede Freitas, Jilian N., und Ana Flávia Nogueira. „Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells“. In Nanoenergy, 1–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31736-1_1.
Der volle Inhalt der QuelleRiedel, I., M. Pientka und V. Dyakonov. „Charge Carrier Photogeneration and Transport in Polymer-Fullerene Bulk-Heterojunction Solar Cells“. In Physics of Organic Semiconductors, 433–50. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606637.ch15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bulk heterojunction organic solar cell"
Nguyen, Thuc-Quyen. „Insight into degradation mechanisms of bulk heterojunction organic solar cells“. In Organic, Hybrid, and Perovskite Photovoltaics XXV, herausgegeben von Gang Li und Natalie Stingelin, 4. SPIE, 2024. http://dx.doi.org/10.1117/12.3029477.
Der volle Inhalt der QuelleFarooq, Waqas, Mahmood Khan und Aimal Daud Khan. „High Performance Bulk-Heterojunction Organic Solar Cells“. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940743.
Der volle Inhalt der QuelleSabri, Nasehah Syamin, Chi Chin Yap, Muhammad Yahaya und Muhamad Mat Salleh. „MEHPPV:PCBM-based bulk heterojunction organic solar cell blended with various organic salts“. In 2012 NATIONAL PHYSICS CONFERENCE: (PERFIK 2012). AIP, 2013. http://dx.doi.org/10.1063/1.4803608.
Der volle Inhalt der QuellePivrikas, Almantas, Gytis Juška, Markus Scharber, Niyazi Serdar Sariciftci und Ronald Österbacka. „Charge Transport and Recombination in Bulk-Heterojunction Solar Cells“. In Organic Photonics and Electronics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ope.2006.optuc3.
Der volle Inhalt der QuelleLi, Kejia, Lijun Li, Petr P. Khlyabich, Beate Burkhart, Barry C. Thompson und Joe C. Campbell. „Efficiency limitations in organic bulk heterojunction solar cells“. In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318222.
Der volle Inhalt der QuelleMohan, Minu, Ramkumar Sekar und Manoj A. G. Namboothiry. „Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell“. In Organic, Hybrid, and Perovskite Photovoltaics XVIII, herausgegeben von Kwanghee Lee, Zakya H. Kafafi und Paul A. Lane. SPIE, 2017. http://dx.doi.org/10.1117/12.2273610.
Der volle Inhalt der QuelleKoh, W. S., Yu A. Akimov, Y. Li, M. S. Soh, W. P. Goh und H. S. Chu. „Optical Enhancement with Plasmonic Nanoparticles in Organic Bulk-Heterojunction Solar Cells“. In Optics for Solar Energy. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ose.2010.swa3.
Der volle Inhalt der QuelleNeukom, Martin T., Nils A. Reinke, Kai A. Brossi und Beat Ruhstaller. „Transient photocurrent response of organic bulk heterojunction solar cells“. In SPIE Photonics Europe, herausgegeben von Paul L. Heremans, Reinder Coehoorn und Chihaya Adachi. SPIE, 2010. http://dx.doi.org/10.1117/12.854668.
Der volle Inhalt der QuelleSolanki, Ankur, Bo Wu, Yeng Ming Lam und Tze Chien Sum. „Charge dynamics in alkanedithiols-additives in P3HT:PCBM bulk heterojunction solar cells“. In SPIE Organic Photonics + Electronics, herausgegeben von Zakya H. Kafafi, Paul A. Lane und Ifor D. W. Samuel. SPIE, 2014. http://dx.doi.org/10.1117/12.2061434.
Der volle Inhalt der QuelleKumar, Kamal, Abhijit Das, Uttam Kumawat, Pankaj Das, Sumakesh Mishra und Anuj Dhawan. „Plasmonic enhancement of absorption in bulk-heterojunction organic solar cells“. In Organic Photonic Materials and Devices XXI, herausgegeben von Christopher E. Tabor, François Kajzar und Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2515404.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bulk heterojunction organic solar cell"
Zimanyi, Gergely, und Mariana Bertoni. EXPLORING SI HETEROJUNCTION SOLAR CELL DEGRADATION: BULK AND INTERFACE PROCESSES ANALYZED BY SIMULATIONS AND EXPERIMENTS IN ORDER TO DEVELOP MITIGATION STRATEGIES. Office of Scientific and Technical Information (OSTI), Dezember 2021. http://dx.doi.org/10.2172/1836838.
Der volle Inhalt der Quelle