Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Buildings information modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Buildings information modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Buildings information modeling"
Braila, Natalya, Nikolai Panchenko und Vadim Kankhva. „Building Information Modeling for existing sustainable buildings“. E3S Web of Conferences 244 (2021): 05024. http://dx.doi.org/10.1051/e3sconf/202124405024.
Der volle Inhalt der QuelleDereje, Lami S., Gizachew M. Dabi, Tewodros T. Baza und Marina I. Rynkovskaya. „Seismic retrofitting of buildings using Building Information Modeling“. Structural Mechanics of Engineering Constructions and Buildings 17, Nr. 2 (15.12.2021): 188–98. http://dx.doi.org/10.22363/1815-5235-2021-17-2-188-198.
Der volle Inhalt der QuelleVolvach, А. „INFORMATION MODELING AS MEANS OF THE BUILDINGS AND STRUCTURES LIFE CYCLE MANAGING“. Odes’kyi Politechnichnyi Universytet Pratsi 2, Nr. 61 (2020): 104–7. http://dx.doi.org/10.15276/opu.2.61.2020.12.
Der volle Inhalt der QuellePaneru, Suman, Forough Foroutan Jahromi, Mohsen Hatami, Wilfred Roudebush und Idris Jeelani. „Integration of Emergy Analysis with Building Information Modeling“. Sustainability 13, Nr. 14 (17.07.2021): 7990. http://dx.doi.org/10.3390/su13147990.
Der volle Inhalt der QuelleSingh, Premjeet, und Ayan Sadhu. „Multicomponent energy assessment of buildings using building information modeling“. Sustainable Cities and Society 49 (August 2019): 101603. http://dx.doi.org/10.1016/j.scs.2019.101603.
Der volle Inhalt der QuelleChudikova, B., und M. Faltejsek. „Solar energy in buildings solved by building information modeling“. IOP Conference Series: Materials Science and Engineering 324 (März 2018): 012002. http://dx.doi.org/10.1088/1757-899x/324/1/012002.
Der volle Inhalt der QuelleGaryaev, Nikolay, und Fadi Ayoub. „Using of building information modeling for existing buildings assessment“. E3S Web of Conferences 263 (2021): 04053. http://dx.doi.org/10.1051/e3sconf/202126304053.
Der volle Inhalt der QuelleAlhassan, Bassel, Jamal Younes Omran und Fayez Ali Jrad. „Maintenance Management for Public Buildings Using Building Information Modeling BIM“. International Journal of Information Systems and Social Change 10, Nr. 3 (Juli 2019): 42–56. http://dx.doi.org/10.4018/ijissc.2019070105.
Der volle Inhalt der QuelleNguyen, Phong Thanh, Thu Anh Nguyen, Ninh Truong Huu Ha und Thuy Ninh Nguyen. „Facilities management in high rise buildings using building information modeling“. International Journal of ADVANCED AND APPLIED SCIENCES 4, Nr. 2 (Februar 2017): 1–9. http://dx.doi.org/10.21833/ijaas.2017.02.001.
Der volle Inhalt der QuelleJeong, WoonSeong, Jong Bum Kim, Mark J. Clayton, Jeff S. Haberl und Wei Yan. „Translating Building Information Modeling to Building Energy Modeling Using Model View Definition“. Scientific World Journal 2014 (2014): 1–21. http://dx.doi.org/10.1155/2014/638276.
Der volle Inhalt der QuelleDissertationen zum Thema "Buildings information modeling"
Barbosa, Margarida de Carvalho Jerónimo. „As-built building information modeling (BIM) workflows“. Doctoral thesis, Universidade de Lisboa, Faculdade de Arquitetura, 2018. http://hdl.handle.net/10400.5/16380.
Der volle Inhalt der QuelleAs metodologias associadas ao software BIM (Building Information Modeling) representam nos dias de hoje um dos sistemas integrados mais utilizado para a construção de novos edifícios. Ao usar BIM no desenvolvimento de projetos, a colaboração entre os diferentes intervenientes num projeto de arquitetura, engenharia e construção, melhora de um modo muito significativo. Esta tecnologia também pode ser aplicada para intervenções em edifícios existentes. Na presente tese pretende-se melhorar os processos de registo, documentação e gestão da informação, recorrendo a ferramentas BIM para estabelecer um conjunto de diretrizes de fluxo de trabalho, para modelar de forma eficiente as estruturas existentes a partir de nuvens de pontos, complementados com outros métodos apropriados. Há vários desafios que impedem a adoção do software BIM para o planeamento de intervenções em edifícios existentes. Volk et al. (2014) indica que os principais obstáculos de adoção BIM são o esforço de modelação/conversão dos elementos do edifício captados em objetos BIM, a dificuldade em actualizar informação em BIM e as dificuldades em lidar com as incertezas associadas a dados, objetos e relações que ocorrem em edifícios existentes. A partir desta análise, foram desenvolvidas algumas diretrizes de fluxo de trabalho BIM para modelação de edifícios existentes. As propostas indicadas para as diretrizes BIM em edifícios existentes, incluem tolerâncias e standards para modelar elementos de edifícios existentes. Tal metodologia permite que as partes interessadas tenham um entendimento e um acordo sobre o que é suposto ser modelado. Na presente tese, foi investigado um conjunto de tópicos de pesquisa que foram formuladas e colocadas, enquadrando os diferentes obstáculos e direcionando o foco de pesquisa segundo quatro vectores fundamentais: 1. Os diferentes tipos de dados de um edifício que podem ser adquiridos a partir de nuvens de pontos; 2. Os diferentes tipos de análise de edifícios; 3. A utilização de standards e BIM para edifícios existentes; 4. Fluxos de trabalho BIM para edifícios existentes e diretrizes para ateliers de arquitectura. A partir da pesquisa efetuada, pode-se concluir que é há necessidade de uma melhor utilização da informação na tomada de decisão no âmbito de um projeto de intervenção arquitetónica. Diferentes tipos de dados, não apenas geométricos, são necessários como base para a análise dos edifícios. Os dados não geométricos podem referir-se a características físicas do tecido construído, tais como materiais, aparência e condição. Além disso, o desempenho ambiental, estrutural e mecânico de um edifício, bem como valores culturais, históricos e arquitetónicos, essenciais para a compreensão do seu estado atual. Estas informações são fundamentais para uma análise mais profunda que permita a compreensão das ações de intervenção que são necessárias no edifício. Através de tecnologias Fotogrametria (ADP) e Laser Scanning (TLS), pode ser gerada informação precisa e actual. O produto final da ADP e TLS são nuvens de pontos, que podem ser usadas de forma complementar. A combinação destas técnicas com o levantamento tradicional Robotic Total Station (RTS) fornece uma base de dados exata que, juntamente com outras informações existentes, permitem o planeamento adequado da intervenção. Os problemas de utilização de BIM para intervenção em edifícios existentes referem-se principalmente à análise e criação de geometria do edifício, o que geralmente é uma etapa prévia para a conexão de informação não-geométrica de edifícios. Por esta razão, a presente tese centra-se principalmente na busca de diretrizes para diminuir a dificuldade em criar os elementos necessários para o BIMs. Para tratar dados incertos e pouco claros ou informações semânticas não visíveis, pode-se complementar os dados originais com informação adicional. Os fluxos de trabalho apresentados na presente tese focam-se principalmente na falta de informação visível. No caso de projetos de remodelação, a informação não visível pode ser adquirida de forma limitada através de levantamentos ADP ou TLS após a demolição de alguns elementos e/ou camadas de parede. Tal metodologia permite um melhor entendimento das camadas de materiais não visíveis dos elementos do edifício, quando a intervenção é uma demolição parcial. Este processo é útil apenas se uma parte do material do elemento é removida e não pode ser aplicada a elementos não intervencionados. O tratamento da informação em falta pode ser feito através da integração de diferentes tipos de dados com diferentes origens. Devem ser implementados os fluxos de trabalho para a integração da informação. Diferentes fluxos de trabalho podem criar informação em falta, usada como complemento ou como base para a tomada de decisão quando não há dados disponíveis. Relativamente à adição de dados em falta através da geração de nuvem de pontos, os casos de estudo destacam a importância de planear o levantamento, fazendo com que todas as partes compreendam as necessidades associadas ao projeto. Além da precisão, o nível de tolerância de interpretação e modelação, requeridos pelo projeto, também devem ser acordados e entendidos. Nem todas as ferramentas e métodos de pesquisa são adequados para todos os edifícios. A escala, os materiais e a acessibilidade do edifício desempenham um papel importante no planeamento do levantamento. Para lidar com o elevado esforço de modelação, é necessário entender os fluxos de trabalho necessários para analisar a geometria dos elementos do edifício. Os BIMs construídos são normalmente gerados manualmente através de desenhos CAD e/ou nuvens de pontos. Estes são usados como base geométrica a partir da qual a informação é extraída. A informação utilizada para planear a intervenção do edifício deve ser verificada, confirmando se é uma representação do estado actual do edifício. As técnicas de levantamento 3D para capturar a condição atual do edifício devem ser integradas no fluxo de trabalho BIM, construído para capturar os dados do edifício sobre os quais serão feitas as decisões de intervenção. O resultado destas técnicas deve ser integrado com diferentes tipos de dados para fornecer uma base mais precisa e completa. O atelier de arquitetura deve estar habilitado com competências técnicas adequadas para saber o que pedir e o que utilizar da forma mais adequada. Os requisitos de modelação devem concentrar-se principalmente no conteúdo deste processo, ou seja, o que modelar, como desenvolver os elementos no modelo, quais as informações que o modelo deve conter e como deve ocorrer a troca de informações no modelo. O levantamento das nuvens de pontos deve ser efectuado após ter sido estipulado o objetivo do projeto, standards, tolerâncias e tipo de conteúdo na modelação. As tolerâncias e normas de modelação são diferentes entre empresas e países. Independentemente destas diferenças, os documentos standard têm como objetivo produzir e receber informação num formato de dados consistente e em fluxos de trabalho de troca eficiente entre os diferentes intervenientes do projeto. O pensamento crítico do fluxo de trabalho de modelação e a comunicação e acordo entre todas os intervenientes são os principais objetivos das diretrizes apresentadas nesta tese. O estabelecimento e o acordo de tolerâncias de modelação e o nível de desenvolvimento e detalhes presentes nas BIMs, entre as diferentes partes envolvidas no projeto, são mais importantes do que as definições existentes atualmente e que são utilizadas pela indústria da AEC. As ferramentas automáticas ou semi-automáticas para extração da forma geométrica, eliminação ou redução de tarefas repetitivas durante o desenvolvimento de BIMs e a análise de condições de ambiente ou de cenários, são também um processo de diminuição do esforço de modelação. Uma das razões que justifica a necessidade de standards é a estrutura e a melhoria da colaboração, não só para os intervenientes fora da empresa, mas também dentro dos ateliers de arquitetura. Os dados e standards de fluxo de trabalho são difíceis de implementar diariamente de forma eficiente, resultando muitas vezes em dados e fluxos de trabalho confusos. Quando tal situação ocorre, a qualidade dos resultados do projeto reduz-se e pode ficar comprometida. As normas aplicadas aos BIMs construídos, exatamente como as normas aplicadas aos BIMs para edifícios novos, contribuem para a criação de informação credível e útil. Para atualizar um BIMs durante o ciclo de vida de um edifício,é necessário adquirir a informação sobre o estado actual do edifício. A monitorização de dados pode ser composta por fotografias, PCM, dados de sensores, ou dados resultantes da comparação de PCM e BIMs e podem representar uma maneira de atualizar BIMs existentes. Isto permite adicionar continuamente informações, documentando a evolução e a história da construção e possibilita avaliar possíveis intervenções de prevenção para a sua valorização. BIM não é geralmente usado para documentar edifícios existentes ou intervenções em edifícios existentes. No presente trabalho propõe-se melhorar tal situação usando standards e/ou diretrizes BIM e apresentar uma visão inicial e geral dos componentes que devem ser incluídos em tais standards e/ou linhas de orientação.
ABSTRACT: Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture, engineering and construction project is improved. This scenario might also be targeted for interventions in existing buildings. This thesis intends to enhance processes of recording, documenting and managing information by establishing a set of workflow guidelines to efficiently model existing structures with BIM tools from point cloud data, complemented with any other appropriate methods. There are several challenges hampering BIM software adoption for planning interventions in existing buildings. Volk et al. (2014) outlines that the as-built BIM adoption main obstacles are: the required modeling/conversion effort from captured building data into semantic BIM objects; the difficulty in maintaining information in a BIM; and the difficulties in handling uncertain data, objects, and relations occurring in existing buildings. From this analysis, it was developped a case for devising BIM workflow guidelines for modeling existing buildings. The proposed content for BIM guidelines includes tolerances and standards for modeling existing building elements. This allows stakeholders to have a common understanding and agreement of what is supposed to be modeled and exchanged.In this thesis, the authors investigate a set of research questions that were formed and posed, framing obstacles and directing the research focus in four parts: 1. the different kind of building data acquired; 2. the different kind of building data analysis processes; 3. the use of standards and as-built BIM and; 4. as-built BIM workflows and guidelines for architectural offices. From this research, the authors can conclude that there is a need for better use of documentation in which architectural intervention project decisions are made. Different kind of data, not just geometric, is needed as a basis for the analysis of the current building state. Non-geometric information can refer to physical characteristics of the built fabric, such as materials, appearance and condition. Furthermore environmental, structural and mechanical building performance, as well as cultural, historical and architectural values, style and age are vital to the understanding of the current state of the building. These information is necessary for further analysis allowing the understanding of the necessary actions to intervene. Accurate and up to date information information can be generated through ADP and TLS surveys. The final product of ADP and TLS are the point clouds, which can be used to complement each other. The combination of these techniques with traditional RTS survey provide an accurate and up to date base that, along with other existing information, allow the planning of building interventions. As-built BIM adoption problems refer mainly to the analysis and generation of building geometry, which usually is a previous step to the link of non-geometric building information. For this reason the present thesis focus mainly in finding guidelines to decrease the difficulty in generating the as-built-BIMs elements. To handle uncertain data and unclear or hidden semantic information, one can complement the original data with additional missing information. The workflows in the present thesis address mainly the missing visible information. In the case of refurbishment projects the hidden information can be acquired to some extend with ADP or TLS surveys after demolition of some elements and wall layers. This allows a better understanding of the non visible materials layers of a building element whenever it is a partial demolition. This process is only useful if a part of the element material is removed, it can not be applied to the non intervened elements. The handling of visible missing data, objects and relations can be done by integrating different kind of data from different kind of sources. Workflows to connect them in a more integrated way should be implemented. Different workflows can create additional missing information, used to complement or as a base for decision making when no data is available. Relating to adding missing data through point cloud data generation the study cases outlined the importance of planning the survey, with all parts understanding what the project needs are. In addition to accuracy, the level of interpretation and modelling tolerances, required by the project, must also be agreed and understood. Not all survey tools and methods are suitable for all buildings: the scale, materials and accessibility of building play a major role in the survey planning. To handle the high modeling/conversion effort one has to understand the current workflows to analyse building geometry. As-built BIMs are majorly manually generated through CAD drawings and/or PCM data. These are used as a geometric basis input from where information is extracted. The information used to plan the building intervention should be checked, confirming it is a representation of the as-is state of the building. The 3D surveys techniques to capture the as-is state of the building should be integrated in the as-built BIM workflow to capture the building data in which intervention decisions are made. The output of these techniques should be integrated with different kind of data to provide the most accurate and complete basis. The architectural company should have technical skills to know what to ask for and to use it appropriately. Modeling requirements should focus primarily on the content of this process: what to model, how to develop the elements in the model, what information should the model contain, and how should information in the model be exchanged. The point clouds survey should be done after stipulating the project goal, standards, tolerances and modeling content. Tolerances and modeling guidelines change across companies and countries. Regardless of these differences the standards documents have the purpose of producing and receiving information in a consistent data format, in efficient exchange workflows between project stakeholders. The critical thinking of the modeling workflow and, the communication and agreement between all parts involved in the project, is the prime product of this thesis guidelines. The establishment and agreement of modeling tolerances and the level of development and detail present in the BIMs, between the different parts involved on the project, is more important than which of the existing definitions currently in use by the AEC industry is chosen. Automated or semi-automated tools for elements shape extraction, elimination or reduction of repetitive tasks during the BIMs development and, analysis of environment or scenario conditions are also a way of decreasing the modeling effort. One of the reasons why standards are needed is the structure and improvement of the collaboration not only with outside parts but also inside architectural offices. Data and workflow standards are very hard to implement daily, in a practical way, resulting in confusing data and workflows. These reduce the quality of communication and project outputs. As-built BIM standards, exactly like BIM standards, contribute to the creation of reliable and useful information. To update a BIMs during the building life-cycle, one needs to acquire the as-is building state information. Monitoring data, whether consisted by photos, PCM, sensor data, or data resulting from the comparison of PCM and BIMs can be a way of updating existing BIMs. It allows adding continuously information, documenting the building evolution and story, and evaluating possible prevention interventions for its enhancement. BIM environments are not often used to document existing buildings or interventions in existing buildings. The authors propose to improve the situation by using BIM standards and/or guidelines, and the authors give an initial overview of components that should be included in such a standard and/or guideline.
N/A
Lu, Fei, und Yuan Cao. „Three-Dimensional Modeling for Buildings Evacuation Management“. Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-12622.
Der volle Inhalt der QuelleGunay, Serkan. „Spatial Information System For Conservation Ofhistoric Buildings Case Study: Doganlar Church Izmir“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608388/index.pdf.
Der volle Inhalt der QuelleSalmon, Spencer Mark. „A Comparative Analysis of Energy ModelingMethods for Commercial Buildings“. BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3703.
Der volle Inhalt der QuelleAquino, Eddie Villanueva. „PREDICTING BUILDING ENERGY PERFORMANCE: LEVERAGING BIM CONTENT FOR ENERGY EFFICIENT BUILDINGS“. DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1077.
Der volle Inhalt der QuelleJalaei, Farzad. „Integrate Building Information Modeling (BIM) and Sustainable Design at the Conceptual Stage of Building Projects“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32536.
Der volle Inhalt der QuelleHeiple, Shem C. „Using Building Energy Simulation and Geospatial Modeling Techniques in Determine High Resolution Building Sector Energy Consumption Profiles“. PDXScholar, 2007. https://pdxscholar.library.pdx.edu/open_access_etds/3399.
Der volle Inhalt der QuelleBose, Saptak. „An integrated approach encompassing point cloud manipulation and 3D modeling for HBIM establishment: a case of study“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenMuthukumar, Subrahmanyam. „The application of advanced inventory techniques in urban inventory data development to earthquake risk modeling and mitigation in mid-America“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26662.
Der volle Inhalt der QuelleCommittee Chair: French, Steven P.; Committee Member: Drummond, William; Committee Member: Goodno, Barry; Committee Member: McCarthy, Patrick; Committee Member: Yang, Jiawen. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Marroquín, Cortez Roberto Enrique. „Context-aware intelligent video analysis for the management of smart buildings“. Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK040/document.
Der volle Inhalt der QuelleTo date, computer vision systems are limited to extract digital data of what the cameras "see". However, the meaning of what they observe could be greatly enhanced by environment and human-skills knowledge.In this work, we propose a new approach to cross-fertilize computer vision with contextual information, based on semantic modelization defined by an expert.This approach extracts the knowledge from images and uses it to perform real-time reasoning according to the contextual information, events of interest and logic rules. The reasoning with image knowledge allows to overcome some problems of computer vision such as occlusion and missed detections and to offer services such as people guidance and people counting. The proposed approach is the first step to develop an "all-seeing" smart building that can automatically react according to its evolving information, i.e., a context-aware smart building.The proposed framework, named WiseNET, is an artificial intelligence (AI) that is in charge of taking decisions in a smart building (which can be extended to a group of buildings or even a smart city). This AI enables the communication between the building itself and its users to be achieved by using a language understandable by humans
Bücher zum Thema "Buildings information modeling"
Kymmell, Willem. Building Information Modeling. New York: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle findenJernigan, Finith E. Big BIM, little bim: The practical approach to building information modeling : integrated practice done the right way! Salisbury, Md: 4Site Press, 2007.
Den vollen Inhalt der Quelle findenJernigan, Finith E. Big BIM, little bim: The practical approach to building information modeling : integrated practice done the right way! 2. Aufl. Salisbury, MD: 4Site Press, 2008.
Den vollen Inhalt der Quelle findenKymmell, Willem. Building information modeling: Planning and managing construction projects with 4D CAD and simulations. New York: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle findenKymmell, Willem. Building information modeling: Planning and managing construction projects with 4D CAD and simulations. New York: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle findenKymmell, Willem. Building information modeling: Planning and managing construction projects with 4D CAD and simulations. New York: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle findenBuilding information modeling: Planning and managing construction projects with 4D CAD and simulations. New York: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle findenHandbook of research on emerging digital tools for architectural surveying, modeling, and representation. Hershey, PA: Engineering Science Reference, 2015.
Den vollen Inhalt der Quelle findenBorrmann, André, Markus König, Christian Koch und Jakob Beetz, Hrsg. Building Information Modeling. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-05606-3.
Der volle Inhalt der QuelleSmith, Dana K., und Michael Tardiff. Building Information Modeling. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470432846.
Der volle Inhalt der QuelleBuchteile zum Thema "Buildings information modeling"
Aengenvoort, Klaus, und Markus Krämer. „BIM in the Operation of Buildings“. In Building Information Modeling, 477–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92862-3_29.
Der volle Inhalt der QuelleAhrens, Chandler, und Aaron Sprecher. „Engines of Information: Big Data from Small Buildings“. In Building Information Modeling, 337–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119174752.ch25.
Der volle Inhalt der QuelleGoldman, Glenn, und Andrzej Zarzycki. „Smart Buildings/Smart(er) Designers: BIM and the Creative Design Process“. In Building Information Modeling, 1–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119174752.ch1.
Der volle Inhalt der QuelleKalay, Yehuda E., Davide Schaumann, Seung Wan Hong und Davide Simeone. „Beyond BIM: Next-Generation Building Information Modeling to Support Form, Function, and Use of Buildings“. In Building Information Modeling, 321–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119174752.ch24.
Der volle Inhalt der QuelleAbujayyab, Sohaib K. M., und Ismail Rakip Karas. „Handling Massive Data Size Issue in Buildings Footprints Extraction from High-Resolution Satellite Images“. In Advances in Building Information Modeling, 195–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42852-5_16.
Der volle Inhalt der QuelleÖzdemir, Melike, und Salih Ofluoglu. „Compliance of Software in Thermal Load Calculations in Buildings: The Case of BIM and HAP Software“. In Advances in Building Information Modeling, 147–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42852-5_12.
Der volle Inhalt der QuelleSeghier, Taki Eddine, Mohd Hamdan Ahmad, Lim Yaik Wah und Muhamad Farhin Harun. „Data Management Using Computational Building Information Modeling for Building Envelope Retrofitting“. In Smart and Sustainable Cities and Buildings, 205–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37635-2_13.
Der volle Inhalt der QuelleUsman, Muhammad, Davide Schaumann, Brandon Haworth, Mubbasir Kapadia und Petros Faloutsos. „Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis“. In Communications in Computer and Information Science, 279–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8410-3_20.
Der volle Inhalt der QuelleBanfi, F., L. Chow, M. Reina Ortiz, C. Ouimet und S. Fai. „Building Information Modeling for Cultural Heritage: The Management of Generative Process for Complex Historical Buildings“. In Digital Cultural Heritage, 119–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75826-8_10.
Der volle Inhalt der QuelleKomyak, Valentyna, Aleksandr Pankratov, Vladimer Komyak und Kyazim Kyazimov. „Mathematical and Computer Modeling of Active Movement of People During Evacuation from Buildings“. In IFIP Advances in Information and Communication Technology, 246–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81469-4_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Buildings information modeling"
Wang, Ruilin, Dongfeng Jia, Weiping Zhang und Yu Tong. „3D Reverse Geometrical Modeling and Building Information Modeling of Historic Buildings“. In 37th CIB W78 Conference 2020. Eduardo Toledo Santos and Sergio Scheer, 2020. http://dx.doi.org/10.46421/2706-6568.37.2020.paper019.
Der volle Inhalt der QuelleWang, Jialiang, Jing Li und Xi Chen. „Parametric Design Based on Building Information Modeling for Sustainable Buildings“. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering. IEEE, 2010. http://dx.doi.org/10.1109/cesce.2010.285.
Der volle Inhalt der QuelleChen, Po-Han, Long Chan, Yu-Chieh Lee und Meng-Shen Kan. „Cost Analysis Of Green Buildings Using Building Information Modeling (Bim)“. In The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_aae-26-443.
Der volle Inhalt der QuelleCho, Chung-Suk, Don Chen und Sungkwon Woo. „Building Information Modeling (BIM)-Based Design of Energy Efficient Buildings“. In 28th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2011. http://dx.doi.org/10.22260/isarc2011/0198.
Der volle Inhalt der QuelleJagxhiu, Besar, und Ferhat Bejtullahu. „Use of Building Information Modeling (BIM) for Heritage Buildings in Kosovo“. In University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2017. http://dx.doi.org/10.33107/ubt-ic.2017.78.
Der volle Inhalt der QuelleLiu, Chang-Yuan, An-Ping Jeng, Chih-Hsiung Chang, Ru-Guan Wang und Chien-Cheng Chou. „Combining Building Information Modeling and Ontology to Analyze Emergency Events in Buildings“. In 34th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2018. http://dx.doi.org/10.22260/isarc2018/0106.
Der volle Inhalt der QuellePasini, Daniela, Silvia Mastrolembo Ventura, Stefano Rinaldi, Paolo Bellagente, Alessandra Flammini und Angelo Luigi Camillo Ciribini. „Exploiting Internet of Things and building information modeling framework for management of cognitive buildings“. In 2016 IEEE International Smart Cities Conference (ISC2). IEEE, 2016. http://dx.doi.org/10.1109/isc2.2016.7580817.
Der volle Inhalt der QuelleReeves, T. J., S. Olbina und R. R. A. Issa. „Guidelines for Using Building Information Modeling (BIM) for Environmental Analysis of High-Performance Buildings“. In International Conference on Computing in Civil Engineering. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412343.0035.
Der volle Inhalt der QuelleSima, Kemo, und Tsung-Juang Wang. „Utilizing Building Information Modeling and Radio Frequency Identification in Recording and Preserving Historic Buildings“. In 34th International Symposium on Automation and Robotics in Construction. Tribun EU, s.r.o., Brno, 2017. http://dx.doi.org/10.22260/isarc2017/0030.
Der volle Inhalt der QuelleDaniela, Marinova,. „Modeling of Grouped Buildings and Their Control with Friction Dampers“. In Information Control Problems in Manufacturing, herausgegeben von Bakhtadze, Natalia, chair Dolgui, Alexandre und Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00312.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Buildings information modeling"
Stumpf, Annette L., Hyunjoo Kim und Elisabeth M. Jenicek. Early Design Energy Analysis Using Building Information Modeling Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada552789.
Der volle Inhalt der QuelleCarstafhnur, Sirobe D., und DeAnna L. Dixon. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada571762.
Der volle Inhalt der QuelleBrucker, Beth A., E. W. East, Lance R. Marrano, Michael P. Case, William D. Goran, Allan Carroll und Gus DeJesus. Emerging Challenges and Opportunities in Building Information Modeling for the US Army Installation Management Command. Fort Belvoir, VA: Defense Technical Information Center, Juli 2012. http://dx.doi.org/10.21236/ada570386.
Der volle Inhalt der QuelleBjella, Kevin, Yuri Shur, Misha Kanevskiy, Paul Duvoy, Bruno Grunau, John Best, Stephen Bourne und Rosa Affleck. Improving design methodologies and assessment tools for building on permafrost in a warming climate. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38879.
Der volle Inhalt der QuelleBrucker, Beth A., Michael P. Case, E. W. East, Brian K. Huston, Susan D. Nachtigall, Johnette C. Shockley, Steve C. Spangler und James T. Wilson. Building Information Modeling (BIM): A Road Map for Implementation to Support MILCON Transformation and Civil Works Projects within the U.S. Army Corps of Engineers. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2006. http://dx.doi.org/10.21236/ada480201.
Der volle Inhalt der QuelleBENTLEY SYSTEMS INC EXTON PA. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 2 - BIM Implementation Guide for Military Construction (MILCON) Projects Using the Bentley Platform. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada578649.
Der volle Inhalt der QuelleAUTODESK INC SAN RAFAEL CA. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 1- BIM Implementation Guide for Military Construction (MILCON) Projects Using the Autodesk Platform. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576142.
Der volle Inhalt der QuelleAfrican Open Science Platform Part 1: Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Der volle Inhalt der Quelle