Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Buildings Environmental engineering“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Buildings Environmental engineering" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Buildings Environmental engineering"
Zhou, Ruina. „Research on the Application of Thermal Insulation Materials in Construction Engineering“. Highlights in Science, Engineering and Technology 106 (16.07.2024): 300–304. http://dx.doi.org/10.54097/sfzt7648.
Der volle Inhalt der QuelleSelecká, Iveta, Silvia Vilčeková und Andrea Moňoková. „Verification of building environmental assessment system for houses“. Selected Scientific Papers - Journal of Civil Engineering 14, Nr. 1 (01.12.2019): 55–66. http://dx.doi.org/10.1515/sspjce-2019-0006.
Der volle Inhalt der QuelleMillán-Martínez, Marlón, Germán Osma-Pinto und Julián Jaramillo-Ibarra. „Estimating a Building’s Energy Performance using a Composite Indicator: A Case Study“. TecnoLógicas 25, Nr. 54 (03.08.2022): e2352. http://dx.doi.org/10.22430/22565337.2352.
Der volle Inhalt der QuelleElkabany, Sara N., und Marwa M. Elrashidey. „Towards Achieving Sustainable Environmental Efficiency: Rationalizing Energy used in Educational Buildings of University Campus“. IOP Conference Series: Earth and Environmental Science 1283, Nr. 1 (01.01.2024): 012009. http://dx.doi.org/10.1088/1755-1315/1283/1/012009.
Der volle Inhalt der QuelleParn, Erika A., David Edwards, Zainab Riaz, Fahad Mehmood und Joseph Lai. „Engineering-out hazards: digitising the management working safety in confined spaces“. Facilities 37, Nr. 3/4 (28.02.2019): 196–215. http://dx.doi.org/10.1108/f-03-2018-0039.
Der volle Inhalt der QuelleBersson, Thomas F., Thomas Mazzuchi und Shahram Sarkani. „A FRAMEWORK FOR APPLICATION OF SYSTEM ENGINEERING PROCESS MODELS TO SUSTAINABLE DESIGN OF HIGH PERFORMANCE BUILDINGS“. Journal of Green Building 7, Nr. 3 (Juli 2012): 171–92. http://dx.doi.org/10.3992/jgb.7.3.171.
Der volle Inhalt der QuelleOSAWA, Haruki, Yasuhiro MIKI, Kazuaki BOGAKI und Hironori SUMIDA. „FIELD MEASUREMENT OF FORMALDEHYDE IN GOVERNMENT BUILDINGS(Environmental Engineering)“. AIJ Journal of Technology and Design 9, Nr. 17 (2003): 255–60. http://dx.doi.org/10.3130/aijt.9.255.
Der volle Inhalt der QuelleSingh, Neha. „Case Study Retrofitting an Existing Building for Griha Green Building Certification“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 7 (31.07.2022): 182–91. http://dx.doi.org/10.22214/ijraset.2022.45062.
Der volle Inhalt der QuelleBaniyounes, Ali M., Yazeed Yasin Ghadi, Maryam Mahmoud Akho Zahia, Eyad Adwan und Kalid Oliemat. „Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings“. International Journal of Power Electronics and Drive Systems (IJPEDS) 12, Nr. 2 (01.06.2021): 1283. http://dx.doi.org/10.11591/ijpeds.v12.i2.pp1283-1292.
Der volle Inhalt der QuelleOndová, Marcela, Adriana Eštoková und Martina Fabianová. „Reducing the carbon footprint in the foundations structures of masonry family houses“. Selected Scientific Papers - Journal of Civil Engineering 15, Nr. 2 (01.12.2020): 55–62. http://dx.doi.org/10.1515/sspjce-2020-0018.
Der volle Inhalt der QuelleDissertationen zum Thema "Buildings Environmental engineering"
Coleman, Keith LaMar. „Building optimization : an integrated approach to the design of tall buildings“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38942.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 73-75).
There has been much research done on building optimization that deal with the issues within specific individual fields, such as architecture, structural engineering, and construction engineering. However, in practical application these issues must be addressed in a much more holistic manner as building design is becoming much more inclusive. A balance must be made that addresses the constructability and scheduling concerns of the contractor, the enclosure and spatial concerns of the architect, and finally the load-carrying concerns of the structural engineer. What if these issues were considered altogether and integrated more fully into building optimization? These issues and concerns would indubitably result in compromise solutions and tradeoffs that would have to be taken into account. This research will not only investigate and utilize current optimization techniques for the conceptual design of tall buildings, but also introduce a new metric in the dynamic analysis of high rise structures.
by Keith L. Coleman.
M.Eng.
Graham, Mark Christopher. „Design strategies for coupling buildings“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12307.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 134-135).
by Mark Christopher Graham.
M.S.
Chok, Kermin 1980. „Lateral systems for tall buildings“. Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30135.
Der volle Inhalt der QuelleIncludes bibliographical references.
The advances in three-dimensional structural analysis and computing resources have allowed the efficient and safe design of increasingly taller structures. These structures are the consequence of increasing urban densification and economic viability. The modern skyscraper has and will thus continue to feature prominently in the landscape of urban cities. The trend towards progressively taller structures has demanded a shift from the traditional strength based design approach of buildings to a focus on constraining the overall motion of the structure. Structural engineers have responded to this challenge of lateral control with a myriad of systems that achieve motion control while adhering to the overall architectural vision. An investigation was carried out to understand the behavior of the different lateral systems employed in today's skyscrapers. The investigation examined the structural behavior of the traditional moment frame, the braced frame, the braced frame with outriggers and finally the tubular structure. The advantages and disadvantages of all schemes were explored from both an architectural and structural efficiency standpoint. Prior to the computer modeling of each lateral system, each scheme was understood from an analytical standpoint to both verify computer results and to illustrate the importance of hand calculations. The study repeatedly illustrated that motion was the governing condition and this led to the proposal of an approach for the design of braced frames.
by Kermin Chok.
M.Eng.
Augé, Laurent J. (Laurent Jacques) 1980. „Structural magnetic induction dampers in buildings“. Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29332.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 49).
This thesis discusses the feasibility of structural magnetic induction dampers for dampening mechanical vibrations in buildings subjected to strong dynamic excitations. The concept of energy harvesting in various fields of engineering is first examined. Then it is applied to the design of magnetic induction dampers in buildings. Various implementations of these dampers are proposed and the related expected performances are estimated. Simulations on buildings modeled as discrete multiple-degree-of-freedom shear beams subjected to earthquakes quantify the results and allow for a comparison of the performances with nonisolated and base-isolated buildings. This study demonstrates the potential efficiency of such dampers for harvesting mechanical energy in buildings and encourages further developments on this topic.
by Laurent J. Auge.
M.Eng.
Gemme, Marie-Claude. „Seismic retrofitting of deficient Canadian buildings“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51576.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 74-77).
Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As a result, these structures are vulnerable to earthquake loadings and are in urgent need of repair and retrofit. This thesis provides a literature review of the vulnerability of Canadian infrastructures built prior to the development of seismic design provisions in actual codes of practice and standards. It describes the performance of typical structures under earthquake loading, such as unreinforced masonry buildings, flat slab concrete buildings and steel frame buildings. It then presents the most common retrofitting strategies applicable to low-rise buildings commonly found in major Canadian cities. A case study assessing the performance of hybrid base isolation systems is then presented. The performance of passive and semi-active hybrid base isolation system is evaluated through the use of a SIMULINK computer model of a typical two-story concrete frame building. A significant reduction in interstory displacement is achieved using the passive system and further reduction in base displacement and base shear is accomplished using the semi-active system.
by Marie-Claude Gemme.
M.Eng.
Abboud, Klink Boutros Sami. „Motion-based design methodology for buildings“. Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/33261.
Der volle Inhalt der QuelleGianferante, Nicholas F. (Nicholas Frank) 1964. „The application of photovoltaics for buildings“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80151.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 83-84).
by Nicholas F. Gianferante.
M.Eng.
Abboud, Klink Boutros Sami. „Motion-based design methodology for buildings“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/41325.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 131-132).
by Boutros Sami Abboud Klink.
M.S.
Malmqvist, Tove. „Methodological aspects of environmental assessment of buildings“. Doctoral thesis, KTH, Miljöstrategisk analys, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9742.
Der volle Inhalt der QuelleUtvecklingen av verktyg för miljöbedömning av byggnader är ett område som expanderat kraftigt sedan 1990-talets början. Den ökande medvetenheten om den byggda miljöns omfattande bidrag till samhällets miljöpåverkan i stort har spelat stor roll för denna utveckling. Verktygen förväntas ha en betydelsefull roll i att driva på och underlätta miljöförbättringar och omdaning av marknaden i bygg- och fastighetssektorn. Denna avhandling utforskar olika metodaspekter för verktygsutveckling och bygger på erfarenheterna från två stora svenska metodutvecklingsprojekt för miljöbedömning av byggnader, EcoEffect och ByggaBo:s miljöklassning av byggnader. Båda dessa verktyg togs fram i samarbete med ett stort antal representanter från bygg- och fastighetssektorn, då verktygen syftade till praktisk användning. Ett antal metodaspekter utforskas och diskuteras i avhandlingen. I artikel 3 föreslås och testas ett angreppssätt för systematiskt urval av miljöaspekter som ska bedömas av ett verktyg och dessutom föreslås här och i artikel 2 ett systematiskt tillvägagångssätt för att välja indikatorer för praktiskt användning utifrån både teoretiska (t ex. validitet) och praktiska (t ex. kostnad) kriterier. Ett angreppssätt för att underlätta kommunikation av komplexa miljöbedömningsresultat presenteras genom exempel från 26 flerfamiljshus i artikel 4. Detta angreppssätt möjliggör att redovisa en byggnads ‘miljöeffektivitet’ i ett diagram utan att behöva vikta de två disparata miljöaspekterna energianvändning och innemiljö. Artikel 5 tar upp användning av miljöindikatorer för internt arbete i fastighetsförvaltande organisationer genom litteraturöversikter inom områdena utvärdering av miljöprestanda och organisationsteori samt genom jämförelser med praktiska fallstudier. Verktygen EcoEffect (artikel 1) och nuvarande version av ByggaBo:s miljöklassningssystem sammanfattas också och jämförs i avhandlingen. Genom ett antal fallstudier av verkliga byggnader och erfarenheterna från EcoEffect- och ByggaBo-projekten utvärderas frågor som insamling av indata, beräkningsmetoder och olika praktiska tillämpningar i avhandlingen. Dålig tillgång på indata begränsar ibland möjligheterna att göra miljöbedömningar. Förbättrade interna rutiner samt utveckling av nya typer av databaser inom bygg- och fastighetssektorn kommer med största sannolikhet att underlätta miljöbedömningar i framtiden. Granskning av ett stort antal miljöindikatorer i artikel 3 (och 2) och litteratur på området visade att när miljöindikatorer och miljöklassningsmetoder tagits fram, har miljörelevansen hos dessa sällan haft högsta prioritet. Ett övergripande mål för denna avhandling har därför varit att bidra med rekommendationer som kan stärka miljörelevansen och trovärdigheten hos liknande indikatorer och verktyg. Några av de angreppssätt som föreslås är tillämpliga mer generellt också för andra typer av miljöbedömningar; t ex. hur miljörelevanta miljöindikatorer kan väljas, hur både teoretiska och praktiska överväganden kan hanteras på ett systematiskt sätt vid liknande verktygsutveckling, angreppssätt för viktning och aggregering av resultat samt användning av ett livscykelperspektiv. Vid miljöbedömning av byggnader bör också funktionsbaserade indikatorer i första hand väljas snarare än sådana som baseras på specifika tekniska utföranden. En trolig utveckling är att nya typer av användare i större utsträckning kommer att efterfråga den information som miljöbedömningsverktyg för byggnader kan tillhandahålla. Det kan handla om t ex. myndigheter, husköpare och ekonomiska incitamentsgivare såsom banker. Av denna anledning är de frågor som rör metodutveckling och tas upp i avhandlingen, klart betydelsefulla för att stärka noggrannhet, robusthet och trovärdighet i framtida utveckling av miljöbedömningsverktyg för byggnader.
QC 20100601
Miljöklassning av byggnader
EcoEffect - miljövärdering av byggnader
Miljöstyrning med miljöindikatorer i fastighetsförvaltning
Cheung, Po-leung Alan, und 張寶樑. „Improvement of building legislation to include environmental design incommercial buildings of Hong Kong“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31254858.
Der volle Inhalt der QuelleBücher zum Thema "Buildings Environmental engineering"
1927-, Dixon John E., Hrsg. Environmental control for agricultural buildings. Westport, Conn: AVI Pub. Co., 1986.
Den vollen Inhalt der Quelle findenBevirt, W. David. Environmental systems technology. 2. Aufl. Gaithersburg, Md: National Environmental Balancing Bureau, 1999.
Den vollen Inhalt der Quelle findenBarre, H. J., L. L. Sammet und G. L. Nelson. Environmental and Functional Engineering of Agricultural Buildings. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1443-1.
Der volle Inhalt der QuelleL, Sammet L., und Nelson G. L. 1919-, Hrsg. Environmental and functional engineering of agricultural buildings. New York: Van Nostrand Reinhold, 1988.
Den vollen Inhalt der Quelle findenEastop, T. D. Mechanical services for buildings. Harlow, Essex, England: Longman Scientific & Technical, 1992.
Den vollen Inhalt der Quelle findenSalvato, Joseph A. Environmental engineering and sanitation. Chichester: Wiley, 1994.
Den vollen Inhalt der Quelle findenChina) International Conference of Green Building Materials and Energy-saving Construction (2011 Harbin. Green building materials and energy-saving construction: Selected, peer reviewed papers from the 2011 International Conference of Green Building Materials and Energy-saving Construction (GBMEC 2011) will be held on August 6, 2011 in Harbin, China. Durnten-Zurich, Switzerland: Trans Tech, 2011.
Den vollen Inhalt der Quelle findenFrederick, Mitchell Charles, Hrsg. Environment and services. 6. Aufl. London: Mitchell Pub. Co., 1988.
Den vollen Inhalt der Quelle findenMoore, Fuller. Environmental control systems: Heating cooling lighting. New York: McGraw-Hill, 1993.
Den vollen Inhalt der Quelle findenChadderton, David V. Building services engineering. 4. Aufl. New York, NY: Spon Press, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Buildings Environmental engineering"
Wilkes, Andrew. „Engineering Services“. In Greener Buildings Environmental impact of property, 104–21. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22752-5_7.
Der volle Inhalt der Quellede Dear, Richard, und Jungsoo Kim. „Thermal Comfort Inside and Outside Buildings“. In Advanced Environmental Wind Engineering, 89–99. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55912-2_5.
Der volle Inhalt der QuelleStathopoulos, Ted, und Bert Blocken. „Pedestrian Wind Environment Around Tall Buildings“. In Advanced Environmental Wind Engineering, 101–27. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55912-2_6.
Der volle Inhalt der QuelleStantchev, Vladimir, und Ralf Meyer. „Environmental Engineering and Facility Management of Berlin’s Public Buildings“. In Information Technologies in Environmental Engineering, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88351-7_7.
Der volle Inhalt der QuelleLi, Zhengrong, Shunyao Lu, Qun Zhao und Fujian Jiang. „Asymmetrical Distribution of Solar Energy in Buildings with Glazing Facede“. In Environmental Science and Engineering, 979–87. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9520-8_101.
Der volle Inhalt der QuelleZhang, Tiantian, Meng Wang und Hongxing Yang. „Energy Performance of a Building-Integrated Photovoltaic/Thermal System for Rural Residential Buildings in Cold Regions of China“. In Environmental Science and Engineering, 847–56. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_86.
Der volle Inhalt der QuelleYao, Mingyao, und Bin Zhao. „Distribution of Air Change Rates in Residential Buildings in Beijing, China“. In Environmental Science and Engineering, 1149–56. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9520-8_119.
Der volle Inhalt der QuelleLi, Dongqian, Guojie Chen und Qinghai Luo. „Numerical Simulation Analysis of Formaldehyde Pollution Control in Newly Decorated Buildings“. In Environmental Science and Engineering, 513–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9520-8_54.
Der volle Inhalt der QuelleXue, Junwei, Junliang Cao, Xiaoxin Man, Zhitao Han und Jing Liu. „Research on the Air Infiltration under Thermal Pressure in Megatall Buildings“. In Environmental Science and Engineering, 709–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_72.
Der volle Inhalt der QuelleTeixeira, Nuno, Luis Gomes und Zita Vale. „Knowledge Retrieval Mechanism for Smart Buildings Based on IoT Devices Data“. In Environmental Science and Engineering, 81–89. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43559-1_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Buildings Environmental engineering"
Jędrzejuk, Hanna, Maciej Jaworski und Michał Chwieduk. „Methods for Improving Energy Performance of Single-family Buildings in Poland’s Climatic Conditions“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.261.
Der volle Inhalt der QuelleLapinskienė, Vilūnė, Violeta Motuzienė, Rasa Džiugaitė-Tumėnienė und Rūta Mikučionienė. „Impact of Internal Heat Gains on Building’s Energy Performance“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.265.
Der volle Inhalt der QuelleBusko, Małgorzata. „Modernization of the Register of Land and Buildings with Reference to Entering Buildings into the Real Estate Cadastre in Poland“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.176.
Der volle Inhalt der QuelleGražulis, Žymantas, Boleslovas Krikštaponis, Algirdas Neseckas, Darius Popovas, Raimundas Putrimas, Dominykas Šlikas und Evelina Zigmantienė. „The Horizontal Deformation Analysis of High-rise Buildings“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.194.
Der volle Inhalt der QuelleBorodinecs, Anatolijs, Jurgis Zemitis, Modris Dobelis, Maris Kalinka und Aleksandrs Geikins. „Development of Prefabricated Modular Retrofitting Solution for Post-World War II Buildings“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.252.
Der volle Inhalt der QuelleMoňoková, Andrea, Silvia Vilčeková und Eva Krídlová Burdová. „Possibilities of Green Technologies Application in Building Design from Sustainability Dimensions“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.268.
Der volle Inhalt der QuelleNakielska, Magdalena, und Krzysztof Pawłowski. „Enhancement of Gravity Ventilation in Buildings“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.269.
Der volle Inhalt der QuelleFořt, Jan, Magdaléna Doleželová und Robert Černý. „Moisture Buffering Potential of Plasters for Energy Efficiency in Modern Buildings“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.254.
Der volle Inhalt der QuelleTurcsanyi, Peter, Anna Sedlakova, Eva Kridlova Burdova und Silvia Vilcekova. „Environmental and Energy Assessment of a Family House“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.274.
Der volle Inhalt der QuelleGRINEVIČIŪTĖ, Monika, und Kęstutis VALANČIUS. „Renewable and non-renewable primary energy factors for Lithuanian A++ buildings’ heating“. In 12th International Conference “Environmental Engineering”. VILNIUS TECH, 2023. http://dx.doi.org/10.3846/enviro.2023.892.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Buildings Environmental engineering"
Johra, Hicham. Simple uncertainty budget and assessment with the Kragten method: Examples for building physics. Department of the Built Environment, 2024. http://dx.doi.org/10.54337/aau633631860.
Der volle Inhalt der QuelleJung, Carina, Karl Indest, Matthew Carr, Richard Lance, Lyndsay Carrigee und Kayla Clark. Properties and detectability of rogue synthetic biology (SynBio) products in complex matrices. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45345.
Der volle Inhalt der QuelleMarkova, Oksana M., Serhiy O. Semerikov, Andrii M. Striuk, Hanna M. Shalatska, Pavlo P. Nechypurenko und Vitaliy V. Tron. Implementation of cloud service models in training of future information technology specialists. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3270.
Der volle Inhalt der QuelleJohra, Hicham. Project CleanTechBlock 2 Thermal conductivity measurement of cellular glass samples. Department of the Built Environment, Aalborg University, Januar 2019. http://dx.doi.org/10.54337/aau307323438.
Der volle Inhalt der QuelleNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano und R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Der volle Inhalt der QuelleMosalam, Khalid, Amarnath Kasalanati und Grace Kang. PEER Annual Report 2016. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, Januar 2017. http://dx.doi.org/10.55461/anra5954.
Der volle Inhalt der QuelleBray, Jonathan, Ross Boulanger, Misko Cubrinovski, Kohji Tokimatsu, Steven Kramer, Thomas O'Rourke, Ellen Rathje, Russell Green, Peter Robertson und Christine Beyzaei. U.S.—New Zealand— Japan International Workshop, Liquefaction-Induced Ground Movement Effects, University of California, Berkeley, California, 2-4 November 2016. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, März 2017. http://dx.doi.org/10.55461/gzzx9906.
Der volle Inhalt der QuelleAyoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, R. Tosi, C. Soriano und R. Rosi. D5.5 Report on the application of multi-level Monte Carlo to wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.03.
Der volle Inhalt der QuellePanek und Young. PR-312-12208-R02 Limitations and Costs Associated with Raising Existing RICE Stack Heights. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2014. http://dx.doi.org/10.55274/r0010556.
Der volle Inhalt der QuelleBridges, Todd, Jeffrey King, Johnathan Simm, Michael Beck, Georganna Collins, Quirijn Lodder und Ram Mohan. International Guidelines on Natural and Nature-Based Features for Flood Risk Management. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41946.
Der volle Inhalt der Quelle