Dissertationen zum Thema „Building thermal models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Building thermal models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Martin, Christopher John. „A new tool for the validation of dynamic simulation models“. Thesis, n.p, 1995. http://ethos.bl.uk/.
Der volle Inhalt der QuelleMelo, C. „Improved convective heat transfer and air infiltration models for building thermal simulation“. Thesis, Cranfield University, 1985. http://hdl.handle.net/1826/3618.
Der volle Inhalt der QuelleD'AMICO, Antonino. „ALTERNATIVE MODELS FOR BUILDING ENERGY PERFORMANCE ASSESSMENT“. Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/395388.
Der volle Inhalt der QuelleAjib, Balsam. „Data-driven building thermal modeling using system identification for hybrid systems“. Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2018. http://www.theses.fr/2018MTLD0006/document.
Der volle Inhalt der QuelleThe building sector is a major energy consumer, therefore, a framework of actions has been decided on by countries worldwide to limit its impact. For implementing such actions, the availability of models providing an accurate description of the thermal behavior of buildings is essential. For this purpose, this thesis proposes the application of a new data-driven technique for modeling the thermal behavior of buildings based on a hybrid system approach. Hybrid systems exhibit both continuous and discrete dynamics. This choice is motivated by the fact that a building is a complex system characterized by nonlinear phenomena and the occurrence of different events. We use a PieceWise AutoRegressive eXogeneous inputs (PWARX) model for the identification of hybrid systems. It is a collection of sub-models where each sub-model is an ARX equation representing a certain configuration in the building characterized by its own dynamics. This thesis starts with a state-of-the-art on building thermal modeling. Then, the choice of a hybrid system approach is motivated by a mathematical interpretation based on the equations derived from an RC thermal circuit of a building zone. This is followed by a brief background about hybrid system identification and a detailed description of the PWARX methodology. For the prediction phase, it is shown how to use the Support Vector Machine (SVM) technique to classify new data to the right sub-model. Then, it is shown how to integrate these models in a hybrid control loop to estimate the gain in the energy performance for a building after insulation work. The performance of the proposed technique is validated using data collected from various test cases
Sandström, Joakim. „Thermal boundary conditions based on field modeling of fires : Heat transfer calculations in CFD and FE models with special regards to fire exposure represented with adiabatic surface temperatures“. Licentiate thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17367.
Der volle Inhalt der QuelleGodkänd; 2013; 20131010 (joasan); Tillkännagivande licentiatseminarium 2013-11-15 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Joakim Sandström Ämne: Stålbyggnad/Steel Structures Uppsats: Thermal Boundary Conditions Based on Field Modelling of Fires Heat Transfer Calculations in CFD and FE Models With Special Regards to Fire Exposure Represented With Adiabatic Surface Temperatures Examinator: Professor Ulf Wickström, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Teknologie doktor, Lektor Stephen Welch, the University of Edinburgh, UK Tid: Torsdag den 5 december 2013 kl 13.00 Plats: F1031, Luleå tekniska universitet
Favretto, Ana Paula Oliveira. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of opaque envelope“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-10102016-132422/.
Der volle Inhalt der QuelleEsta pesquisa avalia as potencialidades do uso de simulações do desempenho térmico (SDT) nas etapas iniciais de projetos de habitações de interesse social (HIS) não condicionadas artificialmente. Busca-se promover e simplificar o uso de SDT no processo de projeto da envolvente de edificações através da criação de modelos de regressão baseados em simulações robustas através do software EnergyPlus. Os meta-modelos são adaptados ao clima de três cidades brasileiras: Curitiba, São Paulo e Manaus, e permitem uma rápida verificação do desconforto térmico nas edificações podendo ser usados como ferramentas de suporte às decisões de projeto nas etapas iniciais. A HIS considerada corresponde a uma unidade térrea com aproximadamente 51m2, composta por dois quartos, um banheiro e cozinha integrada à sala de jantar. Esta configuração é baseada em um conjunto de projetos representativos coletados em algumas cidades brasileiras (como São Paulo, Curitiba e Manaus). Estas habitações naturalmente ventiladas são simuladas pelo módulo Airflow Network utilizando o coeficiente médio de pressão fornecido pelo EnergyPlus. As simulações consideram a parametrização da orientação da edificação, transmitância térmica (U), capacidade térmica (Ct) e absortância () das paredes externas e cobertura; Ct e U das paredes internas; relação entre área de janela e área da parede; tipo da janela (basculante ou de correr); existência e dimensão de dispositivos verticais e horizontais de sombreamento. Os meta-modelos desenvolvidos fornecem a predição anual dos graus-hora de desconforto por frio e calor, calculados com base nos limites de conforto definidos pelo método adaptativo para residências naturalmente ventiladas (ANSI ASHRAE, 2013). A metodologia aplicada consiste em: (a) análise de um grupo de projetos de HIS brasileiras e definição de um modelo geométrico que os represente; (b) definição dos parâmetros relevantes ao conforto térmico, assim como seus intervalos de variação; (c) definição dos dados de entrada para as 10.000 simulações paramétricas utilizadas na criação e teste de confiabilidade dos meta-modelos para cada clima analisado; (d) simulação do desempenho térmico por meio do software EnergyPlus; (e) utilização de 60% dos casos simulados para o desenvolvimento dos modelos de regressão; e (f) uso dos 40% dos dados restantes para testar a confiabilidade do modelo. Exceto pelos modelos para predição do desconforto por calor para Curitiba e São Paulo, os demais meta-modelos apresentaram valores de R2 superiores a 0.9, indicando boa adequação das predições de desconforto dos modelos gerados ao desconforto calculado com base no resultado das simulações no EnergyPlus. Um teste de aplicação dos meta-modelos foi realizado, demonstrando seu grande potencial para guiar os projetistas nas decisões tomadas durante as etapas inicias de projeto.
Rossi, Michele Marta. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of natural ventilation“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-13102016-163056/.
Der volle Inhalt der QuelleSimulações do desempenho de edificações são ferramentas importantes em todo processo de desenvolvimento do projeto, especialmente nas etapas iniciais. No entanto, barreiras como tempo, custo e conhecimento especializado impedem a implementação de tais ferramentas nos escritórios de arquitetura. A presente pesquisa se propôs a desenvolver modelos de regressão (meta-modelos) para avaliar o desconforto térmico em uma habitação de interesse social [HIS] brasileira. Estes meta - modelos predizem os graus-hora de desconforto por calor ou por frio em função de alterações nos parâmetros de projeto para três cidades brasileiras: Curitiba/PR, São Paulo/SP e Manaus/AM. O foco deste trabalho é o uso dos meta-modelos para avaliar o impacto de parâmetros relacionados com estratégias de ventilação natural no conforto térmico em HIS. A HIS brasileira analisada consistiu em uma unidade representativa, naturalmente ventilada e desenvolvida baseada em dados coletados. Os parâmetros que mais influenciam o conforto térmico, nomeados parâmetroschave de projeto foram: orientação da edificação, posição e tamanho das proteções solares, propriedades térmicas dos sistemas construtivos das paredes e do telhado, assim como, áreas de janela nas fachadas e áreas efetiva de abertura. A metodologia foi dividida em: (a) coleta de projetos de HIS brasileiras que embasaram a proposição de um modelobase que os representassem, (b) definição dos parâmetros chave de projeto e suas faixas de variação, a fim de compor o universo de projeto a ser explorado, (c) simulações térmicas usando o EnergyPlus acoplado com uma ferramenta de Monte Carlo para variar randomicamente o universo de projeto considerado, (d) uso da maior parte dos resultados das simulações para o desenvolvimento dos meta-modelos,(e) uso da porção remanescente para a validação dos meta-modelos e (f) aplicação dos meta-modelos em uma simples configuração de projeto, visando testar o seu potencial como ferramenta de suporte de projeto. De modo geral, os meta-modelos apresentaram R2 superiores a 0,95 para todos os climas, exceto os meta-modelos para predizer desconforto por calor para Curitiba (R2 =0,61) e São Paulo (R2 =0,74). Na fase de aplicação, os modelos mostraram predições consistentes para variações na área de janela na fachada, mas incoerências para variações nas áreas efetiva de abertura.
Caliguri, Ryan P. „Comparison of Sensible Water Cooling, Ice building, and Phase Change Material in Thermal Energy Storage Tank Charging: Analytical Models and Experimental Data“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666292483648.
Der volle Inhalt der QuelleAnchieta, Camila Chagas. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of solar incidence and shading devices“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-10102016-105601/.
Der volle Inhalt der QuelleFerramentas de simulação computacional são importantes e uteis durante todas as etapas de projeto, especialmente durante as iniciais. No entanto. Há obstáculos para a completa implementação e uso de tais ferramentas, fazendo com que não sejam uma parte efetiva do processo de projeto. Para superar esta barreira, esta pesquisa é apresentada, com a criação de modelos de regressão (meta-modelos) que permitem a predição do desconforto por frio e/ou por calor em uma habitação de interesse social (HIS) no Brasil em três zonas bioclimáticas, representadas pelas cidades de Curitiba/PR, São Paulo/SP e Manaus/AM. O foco deste trabalho foi analisar o impacto da incidência solar e das proteções solares no conforto térmico utilizando os meta-modelos. O método consistiu em a) coletar dados referentes ao tipo de edifício mencionado para auxiliar na criação do modelo de base; b) a definição dos parâmetros chave e suas faixas de variação; c) simulações no EnergyPlus usando o método de Monte Carlo para aleatoriamente combinar valores de parâmetros dentro de suas faixas; d) análise de regressão e elaboração dos meta-modelos, seguida da validação dos mesmos por testes de confiabilidade; e por fim, e) um estudo de caso, consistindo na aplicação dos meta-modelos a uma HIS padrão para verificar o impacto das proteções solares em uma unidade em relação ao conforto térmico da mesma, assim como o potencial dos meta-modelos em serem utilizados como uma ferramenta de auxílio nas fases iniciais de projeto. No geral, todos os valores de R2 foram acima de 0.95, exceto para os meta-modelos de São Paulo e Curitiba para desconforto por calor, com 0.74 e 0.61, respectivamente. Em relação ao estudo de caso, os meta-modelos previram uma queda de aproximadamente 50% no desconforto por calor para Manaus, dada uma combinação entre orientação, quantidade e dimensão das proteções. Para as demais localidades, os meta-modelos prevendo desconforto por frio e por calor requerem maiores estudos para avaliar predições inesperadas e a sensibilidade dos meta-modelos em relação aos parâmetros de proteções solares.
Talele, Suraj Harish. „Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI)“. Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404602/.
Der volle Inhalt der QuelleBouwer, Werner. „Designing a dynamic thermal and energy system simulation scheme for cross industry applications / W. Bouwer“. Thesis, North-West University, 2004. http://hdl.handle.net/10394/592.
Der volle Inhalt der QuelleThesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2005.
Knutsen, Christopher. „Thermal analysis of the internal climate condition of a house using a computational model“. Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/32740.
Der volle Inhalt der QuelleFaggianelli, Ghjuvan Antone. „Rafraîchissement par la ventilation naturelle traversante des bâtiments en climat méditerranéen“. Thesis, Corte, 2014. http://www.theses.fr/2014CORT0007/document.
Der volle Inhalt der QuelleThe need to reduce energy consumption and CO2 emissions in buildings leads to more and more stringent thermal regulations succeeding one another. In 2020, all new buildings should be positive energy buildings producing more energy than they use. Passive strategies, exploiting the resources of the environment, are a key point to meet this objective.In Mediterranean climate, characterized by hot and dry summers, natural ventilation can provide thermal comfort when used wisely. However, its efficiency is highly dependent on local weather conditions and can vary greatly from one site to another. Despite the simplicity of this type of system, its operation can be complex if the user does not have sufficient information and is not always present in the building. This shows the interest of developing appropriate tools for its study and implementing a simple and optimized control on the building, based on occupant comfort.To assess the potential of natural ventilation without the need of complex experimental measurement or modelling, we propose first of all several climate indicators which can give a first view of a site.Then, based on full-scale experimentations and numerical studies, we focus on the problem of measurement in naturally ventilated buildings with particular attention to the airflow rate. The instrumentation of a residential building at IESC (University of Corsica and CNRS) allows to develop and to test simplified models adapted to the case study. The airflow rate is obtained by statistical tools and the thermal model is based on an electrical analogy. Finally, an application of the coupled thermal and airflow model is proposed to highlight its possibilities on different natural ventilation control modes
Zhao, Zhiheng. „Thermal Inertia In Residential Buildings For Demand Response“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16018.
Der volle Inhalt der QuelleMustafaraj, Giorgio. „Thermal behaviour model identification for three different office buildings“. Thesis, Brunel University, 2008. http://bura.brunel.ac.uk/handle/2438/5336.
Der volle Inhalt der QuellePaepcke, Anne. „NANDRAD 1.4 building simulation model“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-230427.
Der volle Inhalt der QuellePéan, Thibault Q. „Heat pump controls to exploit the energy flexibility of building thermal loads“. Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669805.
Der volle Inhalt der QuellePara aprovechar todo el potencial de flexibilidad energética de las cargas térmicas en los edificios equipados con bombas de calor se requiere de sistemas de control inteligente. Una revisión bibliográfica ha revelado que la mayoría de las estrategias de gestión utilizadas para esta finalidad pueden ser clasificadas en dos categorías: control en base a reglas (RBC en inglés) o predictivo (MPC en inglés), basado en optimización y en el uso de modelos. Tanto RBC como MPC pueden utilizar señales externas de penalización para fundamentar sus decisiones. El precio de la electricidad es utilizado a este fin de forma habitual en estrategias de reducción de coste. Una nueva señal de emisiones marginales de CO2 fue también creada como alternativa. Se han desarrollado un controlador RBC y un MPC para sistemas de bombas de calor aire-agua que cubren las demandas de climatización y agua caliente en el ámbito residencial. El RBC modula las consignas de temperatura, y el MPC minimiza las penalizaciones totales del sistema, al mismo tiempo que se consideran restricciones operativas y de confort. En particular, el MPC ha requerido el desarrollo de nuevos modelos simplificados, para predecir la demanda del edificio y el rendimiento de la bomba de calor, tanto en modo calefacción como en modo refrigeración. Otras novedades añadidas en la configuración del MPC son la formulación entera mixta, y la consideración del retraso debido al tiempo de cómputo. Los controladores fueron testeados, primeramente, en un entorno experimental -hardware-in-the-loop-, con una bomba de calor real instalada en el laboratorio y conectada a unos bancos térmicos que emulan las cargas térmicas del edificio. El entorno experimental ha permitido poner de manifiesto algunos retos prácticos tales como la discrepancia en el modelo del MPC y conflictos de conexión con el controlador local de la bomba de calor. En segundo lugar, un entorno de simulación ha sido creado para testear diversas configuraciones, usando TRNSYS acoplado con MATLAB. Para ello, se ha desarrollado un modelo detallado de la bomba de calor, basado en ensayos realizados en laboratorio, que reproduce el comportamiento dinámico de la bomba de calor con alta fidelidad. Tanto los resultados experimentales como los simulados han revelado la capacidad de los dos tipos de control de desplazar las cargas del edificio hacia periodos donde la electricidad era más barata o había menos emisiones de CO2, estos dos objetivos presentando de hecho impactos contradictorios. En los casos donde el control de referencia presentaba un amplio margen de mejora, los controladores RBC y MPC han demostrado la capacidad de actuar eficientemente y proveer ahorros importantes: alrededor de un 15% de emisiones en modo calefacción, y de un 30% de coste en modo frío. En aquellos casos en el que el control de referencia actuaba de forma cercana a la óptima, los controladores RBC no han sido capaces de aportar mejoras significativas, mientras que el MPC ha demostrado la capacidad de conseguir ahorros de un 5% de coste en modo calefacción y de un 10% de emisiones en modo frío. La investigación realizada en esta tesis ha abarcado amplios aspectos de la flexibilidad energética en los edificios: la generación de señales de penalización, la representación gráfica del potencial de flexibilidad, el ajuste de modelos simplificados, el desarrollo de controladores, el ensayo en entorno experimental y de simulación, con la consecuente evaluación de su rendimiento comparado en periodos de invierno y de verano, así como una discusión de las barreras que dificultan la implementación de controladores MPC y RBC a gran escala. Finalmente, la tesis ha evidenciado el rendimiento de los controladores desarrollados si se formulan de forma adecuada, demostrando su potencial para el desplazamiento del consumo eléctrico en la edificación residencial con sistemas de bomba de calor respondiendo a diferentes señales de penalización. En conclusión, los sistemas propuestos pueden ser elementos muy valiosos para favorecer la necesaria flexibilidad de la demanda térmica en la edificación y posibilitar la integración de sistemas de generación renovables en la red
Eriksson, Rickard, und Pontus Andersson. „Thermal storage solutions for a building in a 4th generation district heating system : Development of a dynamic building model in Modelica“. Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40114.
Der volle Inhalt der QuelleXu, Tianyang. „Research on Building Thermal Model and Energy Consumption Estimation Based on Infrared Thermalgraphy“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenEriksson, Linnea. „The impact of calculation methods on the gap between predicted and actual energy performance of buildings : Using a thermal simulation model of a building“. Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33225.
Der volle Inhalt der QuelleByggnadssektorn är ansvarig för nästan en fjärdedel av de totala globala koldioxidutsläppen. Viljan att minska utsläppen kan ses i de allt striktare riktlinjer som sätts över hela världen. För att reducera utsläppen finns det två sätt: bygga nya energieffektiva byggnader eller ombyggnation av nuvarande byggnader. Livslängden på nuvarande byggnadsbestånd innebär att de största besparingarna innan 2030 kommer att ske inom ombyggnationer. För detta krävs tillförlitliga verktyg, och i nuläget finns det ett gap mellan byggnaders förutspådda och verkliga energiprestanda. I denna examensuppsatts kommer beräkningsmetodens inflytande över detta gap att undersökas. En byggnad på RMIT:s campus i Melbourne, Australien, som kommer att undergå en ombyggnation som designats av Siemens har använts. En termisk simuleringsmodell av byggnaden skapades och avstämdes mot den verkliga byggnaden, och jämfördes mot uppmätta värden av byggnadens energiprestanda. Ombyggnationerna var sedan implementerade och skillnaden mellan den förutspådda prestandan av byggnaden, genom den omfattande simuleringsmodellen och den enklare beräkningsmetoden som användes av Siemens, jämfördes. Genom att analysera gapet mellan de olika beräkningsmetoderna kunde slutsatser dras angående hur de kan bidra till gapet i energiprestanda. Slutsatserna från arbetet är att simuleringsmodellen ger en bra bild av energianvändningen av byggnaden, med hänsyn till informationen som varit tillänglig. Byggnadens totala uppmätta elektricitetsanvändning är speciellt väl överrensstämmande med simuleringsmodellens resultat både i den årliga användningen, ca 4 % skillnad från uppmätta värden, och variationen över ett år. Den totala användningen av naturgas enligt simuleringsmodellen är under de uppmätta värdena med en skillnad på ca 40 %, men med en god överrensstämmelse med den årliga variationen. Användningen av elektricitet i modellen är relativt stabil, användningen av naturgas är känslig för direkta ändringar till uppvärmningssystemet. Inputparametrarna som har störst inverkan på elanvändningen är interna, energiproducerande och konsumerande, enheters användningsprofil (PC, personer, ljus m.m.), el konsumtion, och latenta samt sensibla värme. Siemens beräkningsmetod bidrar till gapet mellan förutspådda och verkliga energiprestanda genom brist på samverkan mellan de olika delarna i ombyggnationen. Ombyggnationen som innebär uppgradering av byggnadens belysning innebär exempelvis märkbara skillnader i byggnadens uppvärmnings- och kylsystem. Användningen av endast en period i skapandet av regressionsmodeller för att förutspå vattenkokarnas och kylarnas användning leder även till en missledande framtida energiproduktion. Styrkan i simuleringsmodellen är möjligheten till samverkan mellan olika ombyggnationer påverkan på varandra samt möjligheten till scenarioanalys.
SILENZI, FEDERICO. „DYNAMIC THERMAL ANALYSIS OF NEARLY ZERO EMISSION BUILDINGS WITH GEOTHERMAL AND SOLAR PLANTS“. Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002027.
Der volle Inhalt der QuelleWolf, Tobias. „Model-based Assessment of Heat Pump Flexibility“. Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284083.
Der volle Inhalt der QuelleWang, Chao. „Point clouds and thermal data fusion for automated gbXML-based building geometry model generation“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54008.
Der volle Inhalt der QuelleLefebvre, Gilles. „Analyse et reduction modales d'un modele de comportement thermique de batiment“. Paris 6, 1987. http://www.theses.fr/1987PA066477.
Der volle Inhalt der QuelleBagci, Mediha Ozlem. „An Analysis Of The Thermal Performance Of Metu Staff Housing Units And Calibration Of Their Simulated Model“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609616/index.pdf.
Der volle Inhalt der Quellethe measurement period was determined according to the coldest days of the year. In this context, the temperature and humidity charts were evaluated and one of the units was simulated using the software tool Ecotect v.5.20. The simulation temperature charts demonstrate similar behavior and trends as the measured temperature
although, it was approximately 4 0C lower than the measured temperature. The possible reason for such a difference may be the precision of the material properties. Six different calibrations were tested by changing the thermal properties of the envelope materials to obtain comparable results with the measured temperature readings. Based on the calibrated model, it was found that an increase in the U-value of the envelope materials did not have a significant effect on the simulated temperature charts.
Cabezas-Rivière, Enzo. „Identifier, comprendre et résoudre les freins à une meilleure maîtrise des consommations de chauffage et du confort en France“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0258.
Der volle Inhalt der QuelleIn the current environmental and economic context, it is crucial that each individual has the tools to manage their heating consumption while maintaining a satisfactory level of comfort. However, obstacles can limit this control over energy and comfort. For example, in buildings with collective heating in France, the distribution of charges between apartments is traditionally based on the proportional surface area, which may discourage the adoption and maintenance of energy-efficient behaviours. To address this, the Élan law aims to individualize heating costs to encourage households to save energy. However, studies conducted on certain dwellings and buildings have shown that the distribution of heating costs is not the only obstacle to greater energy efficiency.Thus, this thesis first aimed to identify and understand the barriers to better control of heating consumption and comfort in French dwellings equipped with collective heating, representing around six million households. To achieve this, a survey was conducted. The results showed that heating bills are often difficult to access and understand, as is the distribution of heating costs. Additionally, respondents expressed the need for additional information, such as personalized advice or data on the environmental impact of their consumption. The results also revealed that the absence of remote programming and control systems for radiators discourages occupants from adopting and maintaining energy-efficient behaviours.Next, the work of this thesis focused on overcoming these barriers. To this end, a methodology was developed to improve both the technical and informational environment for users. Traditionally, to encourage individuals to save energy, one or more interventions are implemented. However, few studies propose an approach that targets relevant interventions based on individual characteristics. To determine the interventions to be used, a behavior change model was employed due to its suitability for energy management. The evaluation of the psychosocial factors constituting this model helped identify the most appropriate interventions for each individual. Moreover, the information provided as part of these interventions was personalized according to the occupants' habits and interests, encouraging them to engage with it. To improve the ease of use of the technical environment, connected thermostatic valves were installed, allowing remote control and programming of radiators at a low cost. These devices transmit data on the ambient temperature and the setpoint applied by users, enabling personalized advice on heating usage. This advice also included an estimate of the savings achievable by following the recommendations. To reliably calculate these potential savings, as well as those already achieved, dynamic thermal simulation models were developed.Finally, the methodology was tested on two families during the 2023-2024 heating period. The evaluation of this experiment considered changes in psychosocial factors, behaviour, comfort and energy savings achieved
Chen, Rongweixin. „Adaptive thermal comfort and its application in mixed mode buildings : the case of a hot-summer and cold-winter climate in China“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285426.
Der volle Inhalt der QuelleShi, Yi. „Research on Application of Parameter Design and Optimization of Building Thermal Model Based on Infrared Image“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenWright, Andrew John. „The development and use of a model for investigating the thermal behaviour of industrial buildings“. Thesis, Open University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284684.
Der volle Inhalt der QuelleHenning, Martin, und Endi Tollkuci. „Energy simulation model for commercial buildings Beridarebanan 4, 11 and 77, with ice thermal storage“. Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256068.
Der volle Inhalt der QuelleNewsham, Guy R. „Investigating the role of thermal comfort in the assessment of building energy performance using a spatial model“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292780.
Der volle Inhalt der QuellePereira, Ricardo Jorge da Silva. „Design and optimization of building integration PV/T systems (BIPV/T)“. Master's thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/13382.
Der volle Inhalt der QuelleZhang, Xiangyu. „A Data-driven Approach for Coordinating Air Conditioning Units in Buildings during Demand Response Events“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/87517.
Der volle Inhalt der QuellePHD
For power system operation, the demand and supply should be equal at all time. During peak hours, the demand becomes very high. One way to keep the balance is to provide more generation capacity, and thus more expensive and less efficient generators are brought online, which causes higher production cost and more pollution. Instead, an alternative is to encourage the load reduction via demand response (DR): customers reduce load upon receiving a signal sent by the utility company, usually in exchange for some monetary payback. For buildings to participate in DR, an affordable automation system and related control algorithms are needed. This dissertation proposed a cost-effective, self-learning and data-driven framework to facilitate small- and medium-sized commercial buildings or large homes in air-conditioner (AC) units control during DR events. The devised framework requires little human configuration; it learns the building behavior by analyzing the operation data. Two algorithms are proposed to coordinate multiple AC units in a building with two goals: firstly, reducing the total AC power consumption below certain limit, as agreed between the building owners and their utility company. Secondly, minimizing occupants’ thermal discomfort caused by limiting AC operation. The effectiveness of the framework is investigated in this dissertation based on data collected from a real building.
SERALE, GIANLUCA. „Innovative solar energy technologies and control algorithms for enhancing demand-side management in buildings“. Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2711298.
Der volle Inhalt der QuelleFaccani, Alice. „Modeling and validation of the thermal behavior of buildings for the development of demand response methods“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10651/.
Der volle Inhalt der QuelleJohari, Fatemeh. „Urban building energy modeling : A systematic evaluation of modeling and simulation approaches“. Licentiate thesis, Uppsala universitet, Byggteknik och byggd miljö, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428021.
Der volle Inhalt der QuelleRaillon, Loic. „Experimental identification of physical thermal models for demand response and performance evaluation“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI039.
Der volle Inhalt der QuelleThe European Union strategy for achieving the climate targets, is to progressively increase the share of renewable energy in the energy mix and to use the energy more efficiently from production to final consumption. It requires to measure the energy performance of buildings and associated systems, independently of weather conditions and user behavior, to provide efficient and adapted retrofitting solutions. It also requires to known the energy demand to anticipate the energy production and storage (demand response). The estimation of building energy demand and the estimation of energy performance of buildings have a common scientific: the experimental identification of the physical model of the building’s intrinsic behavior. Grey box models, determined from first principles, and black box models, determined heuristically, can describe the same physical process. Relations between the physical and mathematical parameters exist if the black box structure is chosen such that it matches the physical ones. To find the best model representation, we propose to use, Monte Carlo simulations for analyzing the propagation of errors in the different model transformations, and factor prioritization, for ranking the parameters according to their influence. The obtained results show that identifying the parameters on the state-space representation is a better choice. Nonetheless, physical information determined from the estimated parameters, are reliable if the model structure is invertible and the data are informative enough. We show how an identifiable model structure can be chosen, especially thanks to profile likelihood. Experimental identification consists of three phases: model selection, identification and validation. These three phases are detailed on a real house experiment by using a frequentist and Bayesian framework. More specifically, we proposed an efficient Bayesian calibration to estimate the parameter posterior distributions, which allows to simulate by taking all the uncertainties into account, which is suitable for model predictive control. We have also studied the capabilities of sequential Monte Carlo methods for estimating simultaneously the states and parameters. An adaptation of the recursive prediction error method into a sequential Monte Carlo framework, is proposed and compared to a method from the literature. Sequential methods can be used to provide a first model fit and insights on the selected model structure while the data are collected. Afterwards, the first model fit can be refined if necessary, by using iterative methods with the batch of data
Simmons, Cody Ryan. „Proactive Energy Optimization in Residential Buildings with Weather and Market Forecasts“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7594.
Der volle Inhalt der QuelleFaheem, Ahmed. „Behaviour of ventilated hollow core slabs for improving the energy efficiency of office buildings“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15284.
Der volle Inhalt der QuelleGross, Steven James. „A Feasibility Study of Model-Based Natural Ventilation Control in a Midrise Student Dormitory Building“. PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/449.
Der volle Inhalt der QuelleRen, Mei Juan. „Optimal predictive control of thermal storage in hollow core ventilated slab systems“. Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/12436.
Der volle Inhalt der QuellePark, Herie. „Modélisation dynamique des apports thermiques dus aux appareils électriques en vue d'une meilleure gestion de l'énergie au sein de bâtiments à basse consommation“. Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0683/document.
Der volle Inhalt der QuelleThis work proposes a dynamic thermal model of electrical appliances within low energy buildings. It aims to evaluate the influence of thermal gains of these appliances on the buildings and persuades the necessity of dynamic thermal modeling of electrical appliances for the energy management of low energy buildings and the thermal comfort of inhabitants.Since electrical appliances are one of the free internal heat sources of a building, the building which thermally interact with the appliances has to be modeled. Accordingly, a test room which represents a small scale laboratory set-up of a low energy building is first modeled based on the first thermodynamics principle and the thermal-electrical analogy. Then, in order to establish the thermal modeling of electrical appliances, the appliances are classified into four categories from thermal and electrical points of view. After that, a generic physically driven thermal model of the appliances is derived. It is established based also on the first thermodynamics principle. Along with this modeling, the used experimental protocol and the used identification procedure are presented to estimate the thermal parameters of the appliances. In order to analyze the relevance of the proposed generic model applied to practical cases, several electrical appliances which are widely used in residential buildings, namely a monitor, a computer, a refrigerator, a portable electric convection heater, and microwave are chosen to study and validate the proposed generic model and the measurement and identification protocols. Finally, the proposed dynamic thermal model of electrical appliances is integrated into a residential building model which was developed and validated by the French Technical Research Center for Building (CSTB) on a real building. This coupled model of the appliances and the building is implemented in a building energy simulation tool SIMBAD, which is a specific toolbox of Matlab/Simulink®. Through the simulation, thermal behavior and heating energy use of the building are observed during a winter period. In addition, thermal discomfort owing to usages of electrical appliances during a summer period is also studied and quantified.This work therefore provides the quantitative results of thermal effect of differently characterized electrical appliances within a low energy building and leads to observe their thermal dynamics and interactions. Consequently, it permits the energy management of low energy buildings and the thermal comfort of inhabitants in accordance with the usages of electrical appliances
Boukadida, Nourredine. „Etude d'une structure a effet de diode thermique : application au chauffage solaire d'un local“. Poitiers, 1986. http://www.theses.fr/1986POIT2287.
Der volle Inhalt der QuelleAl-Hadban, Yehya. „Demand-side management in office buildings in Kuwait through an ice-storage assisted HVAC system with model predictive control“. Thesis, Cranfield University, 2005. http://hdl.handle.net/1826/3885.
Der volle Inhalt der QuelleSchreck, Cédric. „Modélisation statistique des transferts thermo-aérauliques dans les bâtiments“. Electronic Thesis or Diss., Chambéry, 2024. http://www.theses.fr/2024CHAMA019.
Der volle Inhalt der QuelleThe building must adapt to face future climatic conditions, particularly more frequent, longer, and more intense heatwaves. To ensure the thermal comfort of occupants, natural cooling through window opening constitutes a bioclimatic solution that is carbon-free and energy-free. However, its potential to reduce the need for air conditioning depends on the value of the outdoor air change rate. A reliable estimation of this air change rate could promote the consideration of the benefits provided by natural cooling for new construction, for renovation, or for smart control of openings.The objective of this doctoral research is to develop an in-situ diagnostic method for the air change rate through window opening, in occupied buildings, based on non-intrusive instrumentation. To this end, we implement the tracer gas method, based on the metabolic CO2 production by the occupant. A statistical resolution approach, involving a Kalman filter, has been recently introduced in the literature.We investigate the potential and limitations of such a method through the execution of an experimental campaign in a test residential building. In parallel, we develop a building energy simulation model of the case study, providing a digital test bench for the development of statistical models. A new statistical model formulation is proposed and tested. Finally, once the diagnostics for different window configurations are completed, we calibrate a predictive model of the air change rate, proposing an original approach to account for the impact of wind direction
Zábojník, Jakub. „Využití knihovny HAM-Tools pro simulaci tepelného chování rodinného domu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231126.
Der volle Inhalt der QuelleAldaouab, Ibrahim. „Optimization and Control of Smart Renewable Energy Systems“. University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1567770026080553.
Der volle Inhalt der QuelleAoun, Nadine. „Modeling and flexible predictive control of buildings space-heating demand in district heating systems“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC104.
Der volle Inhalt der QuelleIn District Heating Systems (DHSs), buildings Space-Heating (SH) demand management conventionally relies on a heating curve: when the outdoor temperature drops, the internal SH system supply water temperature is raised. This control mode, referred to as Weather-Compensation Control (WCC), offers widely recognized assets in terms of simplicity and robustness. However, WCC does not account for the building thermal inertia, and consequently, it does not allow modulation of its demand. SH demand modulation is the control action of strategically altering the indoor thermal comfort conditions within an energetic and/or economic optimization framework. It is a key measure in flexible demand control strategies, which seek loads shifting and peaks shaving to allow sustainable commitment of energy resources in favour of renewable power penetration and waste heat recovery.The work presented in this thesis aims at developing a flexible Model Predictive Control (MPC) strategy for SH demand, applicable at large scale in DHSs.Firstly, a thermal dynamic simulator of a residential building with a radiator SH circuit connected to a DHS substation is developed. It allows the definition of multiple case study buildings, well-representative of the french residential stock, and constitutes the virtual experimental environment for our research. Then, a methodology to obtain a control-oriented Reduced-Order Model (ROM) for the building and its SH system is proposed. It starts by defining the ROM structure based on physical knowledge, and proceeds to parameters identification by meta-heuristic optimization using data generated by the simulator. The parametric identification approach evaluates the possibility of carrying out this task by relying solely on data available at the substation level, refraining from using indoor temperature measurements, personal data assumed to be unavailable at large scale for technical, economic and legal reasons. Finally, MPC is implemented to schedule the SH supply water temperature as function of weather forecasts and energy price variations. The flexible controller is designed to solve a constrained linear optimization problem according to the receding horizon principle. It embeds the linearized ROM equations within the problem formulation and makes an optimal trade-off between energy consumption costs and thermal discomfort, the degree of flexibility to modulate SH demand being defined through dedicated tuning parameters
Vieira, Afrânio Márcio Corrêa. „Modelagem simultânea de média e dispersão e aplicações na pesquisa agronômica“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-10032009-082556/.
Der volle Inhalt der QuelleSeveral experimental designs that are currently applied are based on agricultural experiments. These experimental data are, usually, analised with statistical models that assume constant residual variance (or homogeneous), as basic assumption. However, this assumption shows hard to stand for, when environmental or external factors exert strong influence over the measurements. In this work, we study the joint modelling for the mean and the variance, the latter being structured on two ways: (i) through a linear predictor, which allows the incorporation of external variables and/or noise factors and (ii) by the use of random effects, that accommodate jointly the possible overdispersion effect and the dependence of longitudinal data in the case of binary measusurements taken over time. The class of double generalized linear models (DGLM) was applied to an observational study where the poultry mortality was measured in the preslaughter operations. With this situation, it can be observed that there is a strong influence from some environmental factors over the variability observed, and consequently, this reduces the precision of the inferential analysis. Another relevant agricultural problem, related to horticulture, is the tissue culture experiments, where the number of regenerated explants is counted. Usually, this kind of experiment use a large number of parameters to be estimated, when compared with the sample size. The current frequentist models are based on large samples for statistical inference and, under this experimental condition, can generate unreliable estimates or even lead to erroneous conclusions. A double generalized linear model was proposed to analyse proportion data, under the Bayesian perspective, which can be applied to small samples and can incorporate expert knowledge into the parameter estimation process. One clinical research, that measured binary data repeatedly through the time is presented and two models are proposed to fit the overdispersion effect and the dependence of longitudinal measurements, using random effects. It was obtained satisfactory results under these three problems studied. the DGLM allowed to identify factors associated with the poultry mortality, that will allow to minimize loss and improve the process, since the catching until lairage on slaughterhouse, agreeing with animal welfare criteria and the European community rules. The Bayesian DGLM allowed to identify the genotype associated with the overdispersion effect, increasing the precision on the inference about varieties selection. Two combined models were proposed, a logit-normal- Bernoulli-beta and a probit-normal-Bernoulli-beta, which have both addressed the overdispersion effect and the longitudinal dependence of the binary measurements. These results reinforce the importance to modelling mean and dispersion jointly, as a way to increase the precision of agricultural experimentation, be it on experimental studies or observational studies.
Rodler, Auline. „Modélisation dynamique tridimensionnelle avec tache solaire pour la simulation du comportement thermique d’un bâtiment basse consommation“. Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0106/document.
Der volle Inhalt der QuelleLow energy building constructions become sensitive to internal gains : any internal heating source has an impact on the envelope. Therefore, it is important to evaluate the performance of current transient thermal models when adapted to low energy buildings. This work describes a numerical model to simulate a single room, using a refined spatial three-dimensional description of heat conduction in the envelope but a single air node is considered. The model has been developed for environmental conditions that vary over short time-steps and has integrated the projection of solar radiation through a window onto interior walls : the sun patch. The validation of the model has been done through a detailed comparison between model and measurements. The in situ experiment has been carried out in one of the BESTlab cells (EDF R&D). The sun patch has been followed by a camera to validate its calculated position and surface. Temperature measurements by thermocouples and by thermal cameras have been compared to the models outputs. Differences between air and surface temperatures measured and simulated were never above 1.5 ˚C and mean errors reached 0.5 ˚C. The two innovations of the model have then be proven. Using minute wise weather data and inputs associated to an adaptative solver, enabled to pull down simulation errors : in May maximal differences rised from 1 ˚C to 2 ˚C for respectivelly one minute and hourly wise inputs. More important errors are seen in summer whereas in winter, air temperatures simulated tend to more fluctuate around the set up temperature when the sampling step gets longer. Two one dimensional models, close to traditional taken simulation tools, were used. Model M 1D,sol supposed the incoming radiation to reach only the floor. A 1D model with sun patch movement, called 1D,parois , was also used. These two models evaluated the air temperature with an acceptable error. However, their surface temperatures were still subject to important errors. Thus, for temperature surfaces evaluation, both 1D model presented differences up to 20 ˚C for surfaces touched by the sun patch. In winter, the 3D model can predict heating energy consumptions overestimated by 6.5 % when M 1D,parois overestimated them by 11 % and M1D,sol by 22 %. The improvements brought by our model have been proven also for other cells with different thermal masses. For these cells, differences between M1D,sol and the 3D model could reach 4.5 ˚C. Differences seemed to be more important for low thermal mass cells, and the orientation of the building had a strong impact. This work has confirmed the necessity of representing more accuratelly the descriptions of the enveloppe for strongly insulated rooms. To improve the model, the anisothermal hypotheses of the air should be considered