Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Building thermal models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Building thermal models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Building thermal models"
Zhu, Jingwei, Olaf Wysocki, Christoph Holst und Thomas H. Kolbe. „Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models“. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-4/W5-2024 (27.06.2024): 341–48. http://dx.doi.org/10.5194/isprs-annals-x-4-w5-2024-341-2024.
Der volle Inhalt der QuelleAdán, Antonio, Blanca Quintana, Juan García Aguilar, Víctor Pérez und Francisco Javier Castilla. „Towards the Use of 3D Thermal Models in Constructions“. Sustainability 12, Nr. 20 (15.10.2020): 8521. http://dx.doi.org/10.3390/su12208521.
Der volle Inhalt der QuelleSun, Xuemei, Saihong Zhu, Hengxuan Zhu, Runze Duan und Jin Wang. „Comparison and analyses of two thermal performance evaluation models for a public building“. Open Physics 17, Nr. 1 (31.12.2019): 916–26. http://dx.doi.org/10.1515/phys-2019-0089.
Der volle Inhalt der QuelleCîrstolovean, Lucian, und Paraschiva Mizgan. „Validation of Building Energy Modeling Tools for a Residential Building in Brasov Area-Romania“. Ovidius University Annals of Constanta - Series Civil Engineering 20, Nr. 1 (01.12.2018): 43–50. http://dx.doi.org/10.2478/ouacsce-2018-0004.
Der volle Inhalt der QuelleNageler, Peter, Thomas Mach, Richard Heimrath, Hermann Schranzhofer und Christoph Hochenauer. „Generation Tool for Automated Thermal City Modelling“. Applied Mechanics and Materials 887 (Januar 2019): 292–99. http://dx.doi.org/10.4028/www.scientific.net/amm.887.292.
Der volle Inhalt der QuelleOkazawa, Kazuki, Naoya Kaneko, Dafang Zhao, Hiroki Nishikawa, Ittetsu Taniguchi, Francky Catthoor und Takao Onoye. „Evaluation of Deep Learning-Based Non-Intrusive Thermal Load Monitoring“. Energies 17, Nr. 9 (24.04.2024): 2012. http://dx.doi.org/10.3390/en17092012.
Der volle Inhalt der QuelleHaghighat, F., und M. Chandrashekar. „System-Theoretic Models for Building Thermal Analysis“. Journal of Solar Energy Engineering 109, Nr. 2 (01.05.1987): 79–88. http://dx.doi.org/10.1115/1.3268196.
Der volle Inhalt der QuelleBoskic, Ljuboslav, und Igor Mezic. „Control-Oriented, Data-Driven Models of Thermal Dynamics“. Energies 14, Nr. 5 (07.03.2021): 1453. http://dx.doi.org/10.3390/en14051453.
Der volle Inhalt der QuelleRasku, Topi, Raimo Simson und Juha Kiviluoma. „Sensitivity of a Lumped-Capacitance Building Thermal Modelling Approach for Energy-Market-Scale Flexibility Studies“. Buildings 14, Nr. 6 (01.06.2024): 1614. http://dx.doi.org/10.3390/buildings14061614.
Der volle Inhalt der QuelleBoodi, Abhinandana, Karim Beddiar, Yassine Amirat und Mohamed Benbouzid. „Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives“. Energies 15, Nr. 4 (11.02.2022): 1328. http://dx.doi.org/10.3390/en15041328.
Der volle Inhalt der QuelleDissertationen zum Thema "Building thermal models"
Martin, Christopher John. „A new tool for the validation of dynamic simulation models“. Thesis, n.p, 1995. http://ethos.bl.uk/.
Der volle Inhalt der QuelleMelo, C. „Improved convective heat transfer and air infiltration models for building thermal simulation“. Thesis, Cranfield University, 1985. http://hdl.handle.net/1826/3618.
Der volle Inhalt der QuelleD'AMICO, Antonino. „ALTERNATIVE MODELS FOR BUILDING ENERGY PERFORMANCE ASSESSMENT“. Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/395388.
Der volle Inhalt der QuelleAjib, Balsam. „Data-driven building thermal modeling using system identification for hybrid systems“. Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2018. http://www.theses.fr/2018MTLD0006/document.
Der volle Inhalt der QuelleThe building sector is a major energy consumer, therefore, a framework of actions has been decided on by countries worldwide to limit its impact. For implementing such actions, the availability of models providing an accurate description of the thermal behavior of buildings is essential. For this purpose, this thesis proposes the application of a new data-driven technique for modeling the thermal behavior of buildings based on a hybrid system approach. Hybrid systems exhibit both continuous and discrete dynamics. This choice is motivated by the fact that a building is a complex system characterized by nonlinear phenomena and the occurrence of different events. We use a PieceWise AutoRegressive eXogeneous inputs (PWARX) model for the identification of hybrid systems. It is a collection of sub-models where each sub-model is an ARX equation representing a certain configuration in the building characterized by its own dynamics. This thesis starts with a state-of-the-art on building thermal modeling. Then, the choice of a hybrid system approach is motivated by a mathematical interpretation based on the equations derived from an RC thermal circuit of a building zone. This is followed by a brief background about hybrid system identification and a detailed description of the PWARX methodology. For the prediction phase, it is shown how to use the Support Vector Machine (SVM) technique to classify new data to the right sub-model. Then, it is shown how to integrate these models in a hybrid control loop to estimate the gain in the energy performance for a building after insulation work. The performance of the proposed technique is validated using data collected from various test cases
Sandström, Joakim. „Thermal boundary conditions based on field modeling of fires : Heat transfer calculations in CFD and FE models with special regards to fire exposure represented with adiabatic surface temperatures“. Licentiate thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17367.
Der volle Inhalt der QuelleGodkänd; 2013; 20131010 (joasan); Tillkännagivande licentiatseminarium 2013-11-15 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Joakim Sandström Ämne: Stålbyggnad/Steel Structures Uppsats: Thermal Boundary Conditions Based on Field Modelling of Fires Heat Transfer Calculations in CFD and FE Models With Special Regards to Fire Exposure Represented With Adiabatic Surface Temperatures Examinator: Professor Ulf Wickström, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Teknologie doktor, Lektor Stephen Welch, the University of Edinburgh, UK Tid: Torsdag den 5 december 2013 kl 13.00 Plats: F1031, Luleå tekniska universitet
Favretto, Ana Paula Oliveira. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of opaque envelope“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-10102016-132422/.
Der volle Inhalt der QuelleEsta pesquisa avalia as potencialidades do uso de simulações do desempenho térmico (SDT) nas etapas iniciais de projetos de habitações de interesse social (HIS) não condicionadas artificialmente. Busca-se promover e simplificar o uso de SDT no processo de projeto da envolvente de edificações através da criação de modelos de regressão baseados em simulações robustas através do software EnergyPlus. Os meta-modelos são adaptados ao clima de três cidades brasileiras: Curitiba, São Paulo e Manaus, e permitem uma rápida verificação do desconforto térmico nas edificações podendo ser usados como ferramentas de suporte às decisões de projeto nas etapas iniciais. A HIS considerada corresponde a uma unidade térrea com aproximadamente 51m2, composta por dois quartos, um banheiro e cozinha integrada à sala de jantar. Esta configuração é baseada em um conjunto de projetos representativos coletados em algumas cidades brasileiras (como São Paulo, Curitiba e Manaus). Estas habitações naturalmente ventiladas são simuladas pelo módulo Airflow Network utilizando o coeficiente médio de pressão fornecido pelo EnergyPlus. As simulações consideram a parametrização da orientação da edificação, transmitância térmica (U), capacidade térmica (Ct) e absortância () das paredes externas e cobertura; Ct e U das paredes internas; relação entre área de janela e área da parede; tipo da janela (basculante ou de correr); existência e dimensão de dispositivos verticais e horizontais de sombreamento. Os meta-modelos desenvolvidos fornecem a predição anual dos graus-hora de desconforto por frio e calor, calculados com base nos limites de conforto definidos pelo método adaptativo para residências naturalmente ventiladas (ANSI ASHRAE, 2013). A metodologia aplicada consiste em: (a) análise de um grupo de projetos de HIS brasileiras e definição de um modelo geométrico que os represente; (b) definição dos parâmetros relevantes ao conforto térmico, assim como seus intervalos de variação; (c) definição dos dados de entrada para as 10.000 simulações paramétricas utilizadas na criação e teste de confiabilidade dos meta-modelos para cada clima analisado; (d) simulação do desempenho térmico por meio do software EnergyPlus; (e) utilização de 60% dos casos simulados para o desenvolvimento dos modelos de regressão; e (f) uso dos 40% dos dados restantes para testar a confiabilidade do modelo. Exceto pelos modelos para predição do desconforto por calor para Curitiba e São Paulo, os demais meta-modelos apresentaram valores de R2 superiores a 0.9, indicando boa adequação das predições de desconforto dos modelos gerados ao desconforto calculado com base no resultado das simulações no EnergyPlus. Um teste de aplicação dos meta-modelos foi realizado, demonstrando seu grande potencial para guiar os projetistas nas decisões tomadas durante as etapas inicias de projeto.
Rossi, Michele Marta. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of natural ventilation“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-13102016-163056/.
Der volle Inhalt der QuelleSimulações do desempenho de edificações são ferramentas importantes em todo processo de desenvolvimento do projeto, especialmente nas etapas iniciais. No entanto, barreiras como tempo, custo e conhecimento especializado impedem a implementação de tais ferramentas nos escritórios de arquitetura. A presente pesquisa se propôs a desenvolver modelos de regressão (meta-modelos) para avaliar o desconforto térmico em uma habitação de interesse social [HIS] brasileira. Estes meta - modelos predizem os graus-hora de desconforto por calor ou por frio em função de alterações nos parâmetros de projeto para três cidades brasileiras: Curitiba/PR, São Paulo/SP e Manaus/AM. O foco deste trabalho é o uso dos meta-modelos para avaliar o impacto de parâmetros relacionados com estratégias de ventilação natural no conforto térmico em HIS. A HIS brasileira analisada consistiu em uma unidade representativa, naturalmente ventilada e desenvolvida baseada em dados coletados. Os parâmetros que mais influenciam o conforto térmico, nomeados parâmetroschave de projeto foram: orientação da edificação, posição e tamanho das proteções solares, propriedades térmicas dos sistemas construtivos das paredes e do telhado, assim como, áreas de janela nas fachadas e áreas efetiva de abertura. A metodologia foi dividida em: (a) coleta de projetos de HIS brasileiras que embasaram a proposição de um modelobase que os representassem, (b) definição dos parâmetros chave de projeto e suas faixas de variação, a fim de compor o universo de projeto a ser explorado, (c) simulações térmicas usando o EnergyPlus acoplado com uma ferramenta de Monte Carlo para variar randomicamente o universo de projeto considerado, (d) uso da maior parte dos resultados das simulações para o desenvolvimento dos meta-modelos,(e) uso da porção remanescente para a validação dos meta-modelos e (f) aplicação dos meta-modelos em uma simples configuração de projeto, visando testar o seu potencial como ferramenta de suporte de projeto. De modo geral, os meta-modelos apresentaram R2 superiores a 0,95 para todos os climas, exceto os meta-modelos para predizer desconforto por calor para Curitiba (R2 =0,61) e São Paulo (R2 =0,74). Na fase de aplicação, os modelos mostraram predições consistentes para variações na área de janela na fachada, mas incoerências para variações nas áreas efetiva de abertura.
Caliguri, Ryan P. „Comparison of Sensible Water Cooling, Ice building, and Phase Change Material in Thermal Energy Storage Tank Charging: Analytical Models and Experimental Data“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666292483648.
Der volle Inhalt der QuelleAnchieta, Camila Chagas. „Regression models to assess the thermal performance of Brazilian low-cost houses: consideration of solar incidence and shading devices“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-10102016-105601/.
Der volle Inhalt der QuelleFerramentas de simulação computacional são importantes e uteis durante todas as etapas de projeto, especialmente durante as iniciais. No entanto. Há obstáculos para a completa implementação e uso de tais ferramentas, fazendo com que não sejam uma parte efetiva do processo de projeto. Para superar esta barreira, esta pesquisa é apresentada, com a criação de modelos de regressão (meta-modelos) que permitem a predição do desconforto por frio e/ou por calor em uma habitação de interesse social (HIS) no Brasil em três zonas bioclimáticas, representadas pelas cidades de Curitiba/PR, São Paulo/SP e Manaus/AM. O foco deste trabalho foi analisar o impacto da incidência solar e das proteções solares no conforto térmico utilizando os meta-modelos. O método consistiu em a) coletar dados referentes ao tipo de edifício mencionado para auxiliar na criação do modelo de base; b) a definição dos parâmetros chave e suas faixas de variação; c) simulações no EnergyPlus usando o método de Monte Carlo para aleatoriamente combinar valores de parâmetros dentro de suas faixas; d) análise de regressão e elaboração dos meta-modelos, seguida da validação dos mesmos por testes de confiabilidade; e por fim, e) um estudo de caso, consistindo na aplicação dos meta-modelos a uma HIS padrão para verificar o impacto das proteções solares em uma unidade em relação ao conforto térmico da mesma, assim como o potencial dos meta-modelos em serem utilizados como uma ferramenta de auxílio nas fases iniciais de projeto. No geral, todos os valores de R2 foram acima de 0.95, exceto para os meta-modelos de São Paulo e Curitiba para desconforto por calor, com 0.74 e 0.61, respectivamente. Em relação ao estudo de caso, os meta-modelos previram uma queda de aproximadamente 50% no desconforto por calor para Manaus, dada uma combinação entre orientação, quantidade e dimensão das proteções. Para as demais localidades, os meta-modelos prevendo desconforto por frio e por calor requerem maiores estudos para avaliar predições inesperadas e a sensibilidade dos meta-modelos em relação aos parâmetros de proteções solares.
Talele, Suraj Harish. „Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI)“. Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404602/.
Der volle Inhalt der QuelleBücher zum Thema "Building thermal models"
National Institute of Standards and Technology (U.S.), Hrsg. The thermal response of gypsum-panel/steel-stud wall systems exposed to fire environments: A simulation for use in zone-type fire models. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenA, Tabunschikov I͡U. Mathematical models of thermal conditions in buildings. Boca Raton: CRC Press, 1992.
Den vollen Inhalt der Quelle findenLawrence Berkeley Laboratory. Energy Analysis Dept., Hrsg. Duct thermal performance models for large commercial buildings. Berkeley, CA: Energy Analysis Dept., Environmental Energy Technologies Division, Indoor Environment Department, Lawrence Berkeley National Laboratory, 2003.
Den vollen Inhalt der Quelle findenJeffrey, Wix, und Building Services Research and Information Association. Computer Centre., Hrsg. Dynamic thermal modelling. Lutterworth, UK: Ambient Press, 1987.
Den vollen Inhalt der Quelle findenAlmusaed, Amjad. Effective thermal insulation: The operative factor of a passive building model. Rijeka: InTech, 2012.
Den vollen Inhalt der Quelle findenZhukov, Aleksey, Ekaterina Bobrova, Igor' Bessonov und Elizaveta Mednikova. Energy efficiency of building systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1856852.
Der volle Inhalt der QuelleHopkowicz, Marian. Uproszczone modele matematyczne dynamiki cieplnej obiektów ogrzewanych. Kraków: Politechnika Krakowska, 1992.
Den vollen Inhalt der Quelle findenTenWolde, Anton. FPL Roof Temperature and Moisture Model: Description and verification. Madison, Wis: Forest Products Laboratory, 1997.
Den vollen Inhalt der Quelle findenTenWolde, Anton. FPL roof temperature and moisture model: Description and verification. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1997.
Den vollen Inhalt der Quelle findenForest Products Laboratory (U.S.), Hrsg. FPL roof temperature and moisture model: Description and verification. Madison, WI (One Gifford Pinchot Dr., Madison 53705-2398): U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Building thermal models"
Parker, James, Martin Fletcher und David Johnston. „Predicting Future Overheating in a Passivhaus Dwelling Using Calibrated Dynamic Thermal Simulation Models“. In Building Information Modelling, Building Performance, Design and Smart Construction, 163–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50346-2_12.
Der volle Inhalt der QuelleAntón, D., Amin Al-Habaibeh und T. Queiroz. „Learning from the Past for a Sustainable Future: Environmental Monitoring and 3D Modelling to Assess the Thermal Performance of Heritage Buildings“. In Springer Proceedings in Energy, 31–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_4.
Der volle Inhalt der QuelleVengala, Jagadish, Srinivas Chava und Premkumar Pydipati. „Thermal Comfort Studies of Residential Building Models in Vijayawada“. In Lecture Notes in Civil Engineering, 123–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_8.
Der volle Inhalt der QuelleKhan, Zahida, und Rahman Azari. „Outdoor Thermal Comfort & Human Behavior Factors, Models, and Methodologies“. In Research Methods in Building Science and Technology, 131–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73692-7_7.
Der volle Inhalt der QuelleYan, Hainan, Yiting Zhang, Sheng Liu, Ka Ming Cheung und Guohua Ji. „Optimization of Daylight and Thermal Performance of Building Façade: A Case Study of Office Buildings in Nanjing“. In Proceedings of the 2021 DigitalFUTURES, 168–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_16.
Der volle Inhalt der QuelleCascone, Stefano. „Integrating Green Roofs into Building Information Modeling (BIM): A Computational Approach for Sustainable Building Design“. In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 988–97. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0289-3.99.
Der volle Inhalt der QuelleCascone, Stefano. „Integrating Green Roofs into Building Information Modeling (BIM): A Computational Approach for Sustainable Building Design“. In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 988–97. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/10.36253/979-12-215-0289-3.99.
Der volle Inhalt der QuelleKharbanda, Kritika, und Holly W. Samuelson. „Quantifying Thermal Resilience with Energy Efficiency in Residential Building Stock Models“. In Lecture Notes in Civil Engineering, 245–50. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-8309-0_32.
Der volle Inhalt der QuelleRobinson, N., S. Burek und G. Burns. „On incorporating physical building parameters into neural net models of dynamic thermal behaviour“. In Environmental Software Systems, 241–50. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34951-0_21.
Der volle Inhalt der QuellePolyakov, A. N., und I. P. Nikitina. „Application of Modal Analysis to Building Simulation Models of Thermal Processes in Machine Tools“. In Lecture Notes in Mechanical Engineering, 75–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54817-9_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Building thermal models"
DOGAN, Timur, und Christoph REINHART. „Automated Conversion Of Architectural Massing Models Into Thermal ‘shoebox’ Models“. In 2017 Building Simulation Conference. IBPSA, 2013. http://dx.doi.org/10.26868/25222708.2013.1123.
Der volle Inhalt der QuelleDimitriou, Vanda, Steven K. Firth, Tarek M. Hassan, Tom Kane und Michael Coleman. „Data-Driven Simple Thermal Models: the Radiator-Gas Consumption Model“. In 2015 Building Simulation Conference. IBPSA, 2015. http://dx.doi.org/10.26868/25222708.2015.2478.
Der volle Inhalt der QuelleDeng, Zhipeng, und Qingyan Chen. „Neural Network Models Using Thermal Sensations and Occupants’ Behavior for Predicting Thermal Comfort“. In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.hf-1.04.
Der volle Inhalt der QuellePetrushevski, Filip, Stefan Hauer, Florian Judex, Sergio Leal und Katharina Eder. „Quality Assessment of Automatically Generated Simplified Thermal Building Models“. In 2015 Building Simulation Conference. IBPSA, 2015. http://dx.doi.org/10.26868/25222708.2015.2260.
Der volle Inhalt der QuelleAIRAKSINEN, Miimu, Riikka HOLOPAINEN, Pekka TUOMAALA, Mikko SAARI, Arto ANTSON, Annu HAAPAKANGAS, Virpi RUOHOMAKI, Marjaana LAHTI und Risto RUOTSALAINEN. „Comparison Of Human Thermal Models, Measured Results And Questionnaires“. In 2017 Building Simulation Conference. IBPSA, 2013. http://dx.doi.org/10.26868/25222708.2013.2097.
Der volle Inhalt der QuelleMaturo, Anthony, Andreas Athienitis und Benoit Delcroix. „A novel model reduction and calibration methodology to define lumped parameters of building thermal models“. In 2023 Building Simulation Conference. IBPSA, 2023. http://dx.doi.org/10.26868/25222708.2023.1399.
Der volle Inhalt der QuelleSievers, Felix Michael, Dirk Hartmann und Hans-Joachim Bungartz. „JAX-based gray-box modeling framework for hybrid thermal building models“. In 2023 Building Simulation Conference. IBPSA, 2023. http://dx.doi.org/10.26868/25222708.2023.1641.
Der volle Inhalt der QuelleMatthiss, Benjamin, Abdul Azzam und Jann Binder. „Thermal Building Models for Energy Management Systems“. In 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2023. http://dx.doi.org/10.1109/eeeic/icpseurope57605.2023.10194636.
Der volle Inhalt der QuelleBuderus, Julian, und Arno Dentel. „Generalization Approach for Models of Thermal Buffer Storages in Predictive Control Strategies“. In 2017 Building Simulation Conference. IBPSA, 2017. http://dx.doi.org/10.26868/25222708.2017.074.
Der volle Inhalt der QuelleRAILLON, Loïc, und Christian GHIAUS. „Sequential Monte Carlo for States and Parameters Estimation in Dynamic Thermal Models“. In 2017 Building Simulation Conference. IBPSA, 2017. http://dx.doi.org/10.26868/25222708.2017.020.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Building thermal models"
Witzig, Andreas, Camilo Tello, Franziska Schranz, Johannes Bruderer und Matthias Haase. Quantifying energy-saving measures in office buildings by simulation in 2D cross sections. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541623658.
Der volle Inhalt der QuelleWray, Craig P. Duct thermal performance models for large commercial buildings. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/820660.
Der volle Inhalt der QuelleLeWinter, Adam, Elias Deeb, Dominic Filiano und David Finnegan. Continued investigation of thermal and lidar surveys of building infrastructure : Crary Lab and wet utility corridor, McMurdo Station, Antarctica. Engineer Research and Development Center (U.S.), März 2022. http://dx.doi.org/10.21079/11681/43820.
Der volle Inhalt der QuelleGoodman, Carolyn, Laura Hinkle, Trevor Hardy und Hayden Reeve. Building Model Calibration: Validation of GridLAB-D Thermal Dynamics Modeling. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1897180.
Der volle Inhalt der QuelleKonsam, Manis Kumar, Amanda Thounajam, Prasad Vaidya, Gopikrishna A, Uthej Dalavai und Yashima Jain. Machine Learning-Enhanced Control System for Optimized Ceiling Fan and Air Conditioner Operation for Thermal Comfort. Indian Institute for Human Settlements, 2024. http://dx.doi.org/10.24943/mlcsocfacotc6.2023.
Der volle Inhalt der QuelleWeinschenk, Craig, Keith Stakes und Robin Zevotek. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Air Entrainment. UL Firefighter Safety Research Institute, Dezember 2017. http://dx.doi.org/10.54206/102376/gmax3657.
Der volle Inhalt der QuelleStakes, Keith, und Joseph Willi. Study of the Fire Service Training Environment: Safety, Fidelity, and Exposure -- Acquired Structures. UL Firefighter Safety Research Institute, März 2019. http://dx.doi.org/10.54206/102376/ceci9490.
Der volle Inhalt der QuelleZevotek, Robin, Keith Stakes und Joseph Willi. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Full-Scale Experiments. UL Firefighter Safety Research Institute, Januar 2018. http://dx.doi.org/10.54206/102376/dnyq2164.
Der volle Inhalt der QuelleWeinschenk, Craig, Keith Stakes und Robin Zevotek. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Water Mapping. UL Firefighter Safety Research Institute, Dezember 2017. http://dx.doi.org/10.54206/102376/nevx1787.
Der volle Inhalt der QuelleINVESTIGATION ON BEHAVIOR OF STEEL CABLES SUBJECT TO LOCALIZED FIRE IN LARGE-SPACE BUILDINGS. The Hong Kong Institute of Steel Construction, März 2024. http://dx.doi.org/10.18057/ijasc.2024.20.1.1.
Der volle Inhalt der Quelle