Auswahl der wissenschaftlichen Literatur zum Thema „Building and infrastructure“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Building and infrastructure" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Building and infrastructure"

1

Pangastuti, Dyah Ayu, und Yusuf Latief. „Conceptual Framework for Developing Web-based Maintenance Systems for Government’s Simple-Buildings within the DKI Jakarta Provincial Government“. Journal of International Conference Proceedings 4, Nr. 1 (22.07.2021): 58–74. http://dx.doi.org/10.32535/jicp.v4i1.1124.

Der volle Inhalt der Quelle
Annotation:
DKI Jakarta, as the capital of the Republic of Indonesia, has the highest population density in Indonesia, with a population of 16,334 people / km2. Therefore, community facilities and infrastructure within the DKI Jakarta Provincial Government play an important role so that community service can be carried out properly. As one of the main infrastructures, State Buildings must have building reliability as stated in the technical requirements stipulated in Presidential Regulation Number 73 of 2016. Building maintenance is an activity to maintain the building's reliability and infrastructure, and facilities so that the building always functions properly. Based on a survey conducted by the DKI Jakarta Provincial Office for The Creation of Works, Spatial Planning and Land Use in 2019, the number of building assets of Province DKI Jakarta are 9823 buildings. 60% of those buildings were classified as Simple-Building category. Due to the numerous building assets, maintenance activities need to be supported by an adequate maintenance system. This study aims to develop a building maintenance system based on web. The methodology used in this research are expert validation, interviews, field survey and literature studies. The results of the validation process will be developed into a simple-building’s web-based maintenance system framework.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dangermond, Jack, und Michael F. Goodchild. „Building geospatial infrastructure“. Geo-spatial Information Science 23, Nr. 1 (06.12.2019): 1–9. http://dx.doi.org/10.1080/10095020.2019.1698274.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Taylor-Alexander, Samuel, und Courtney Addison. „Building for Biology: A Gene Therapy Trial Infrastructure“. Engaging Science, Technology, and Society 3 (29.06.2017): 332. http://dx.doi.org/10.17351/ests2017.104.

Der volle Inhalt der Quelle
Annotation:
In this article, we examine the construction of the infrastructure for a Phase II gene therapy trial for Cystic Fibrosis (CF). Tracing the development of the material technologies and physical spaces used in the trial, we show how the trial infrastructure took form at the uncertain intersection of scientific norms, built environments, regulatory negotiations, patienthood, and the biologies of both disease and therapy. We define infrastructures as material and immaterial (including symbols and affect) composites that serve a selective distributive purpose and facilitate projects of making and doing. There is a politics to this distributive action, which is itself twofold, because whilst infrastructures enable and delimit the movement of matter, they also mediate the very activity for which they provide the grounds. An infrastructural focus allows us to show how purposeful connections are made in a context of epistemic and regulatory uncertainty. The gene therapy researchers were working in a context of multiple uncertainties, regarding not only how to do gene therapy, but also how to anticipate and enact ambiguous regulatory requirements in a context of limited resources (technical, spatial, and financial). At the same time, the trial infrastructure had to accommodate Cystic Fibrosis biology by bridging the gap between pathology and therapy. The consortium’s approach to treating CF required that they address concerns about contamination and safety while finding a way of getting a modified gene product into the lungs of the trial participants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lynch, Michael. „Building a global infrastructure“. Studies in History and Philosophy of Science Part A 26, Nr. 1 (März 1995): 167–72. http://dx.doi.org/10.1016/0039-3681(94)00032-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Garrison, Eric, und Joshua New. „Quality Control Methods for Advanced Metering Infrastructure Data“. Smart Cities 4, Nr. 1 (28.01.2021): 195–203. http://dx.doi.org/10.3390/smartcities4010012.

Der volle Inhalt der Quelle
Annotation:
While urban-scale building energy modeling is becoming increasingly common, it currently lacks standards, guidelines, or empirical validation against measured data. Empirical validation necessary to enable best practices is becoming increasingly tractable. The growing prevalence of advanced metering infrastructure has led to significant data regarding the energy consumption within individual buildings, but is something utilities and countries are still struggling to analyze and use wisely. In partnership with the Electric Power Board of Chattanooga, Tennessee, a crude OpenStudio/EnergyPlus model of over 178,000 buildings has been created and used to compare simulated energy against actual, 15-min, whole-building electrical consumption of each building. In this study, classifying building type is treated as a use case for quantifying performance associated with smart meter data. This article attempts to provide guidance for working with advanced metering infrastructure for buildings related to: quality control, pathological data classifications, statistical metrics on performance, a methodology for classifying building types, and assess accuracy. Advanced metering infrastructure was used to collect whole-building electricity consumption for 178,333 buildings, define equations for common data issues (missing values, zeros, and spiking), propose a new method for assigning building type, and empirically validate gaps between real buildings and existing prototypes using industry-standard accuracy metrics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wethal, Ulrikke. „Building Africa’s Infrastructure: Reinstating History in Infrastructure Debates“. Forum for Development Studies 46, Nr. 3 (14.05.2019): 473–99. http://dx.doi.org/10.1080/08039410.2019.1616609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Edwards, J. „Building the optical-networking infrastructure“. Computer 33, Nr. 3 (März 2000): 20–23. http://dx.doi.org/10.1109/mc.2000.825690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vourlekis, Betsy S., Joan Levy Zlotnik, Juan Ramos und Kathleen Ell. „Building the Profession’s Research Infrastructure“. Advances in Social Work 15, Nr. 1 (11.05.2014): 230–45. http://dx.doi.org/10.18060/16843.

Der volle Inhalt der Quelle
Annotation:
Beginning in 1988, the social work profession undertook a twenty-five year endeavor to enhance its research capacity and to assure greater representation of social work research needs, priorities and findings at the federal level, where major policy initiatives take place. Described here are some of the key processes, highlighting the efforts to achieve professional solidarity, and the interventions, by social workers, federal "insiders" and outside advocacy agents that carried the work forward. Details and accomplishments of this long-term, carefully sustained, and still incomplete professional self-strengthening change strategy provide insights for future collective professional endeavors. Twenty-five years ago the social work profession began a sustained effort to strengthen its research infrastructure in support of demonstrating practice effectiveness, advancing knowledge for critical social problems, and informing national policy. The steps and processes undertaken and the outcomes achieved by this effort have been described elsewhere (Austin, 1998; Corvo, Zlotnik, & Chen, 2008; TFSWR, 1991; Zlotnik, Biegel, & Solt, 2002; Zlotnik & Solt, 2006, 2008). What we want to capture through this, our eye-witness account, are some of the nuanced and specific actions, obstacles, and decisions involved in this effort. Recreating this case study of a profession's self-strengthening change strategy – targeted both to the external environment and its own internal one – can provide insights for future profession-wide, collective efforts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alimchandani, C. R., und N. Bandyopadhyay. „Building Infrastructure with Appropriate Technology“. IABSE Symposium Report 96, Nr. 3 (01.01.2009): 50–59. http://dx.doi.org/10.2749/222137809796088891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kreager, P. S. „The intelligent building telecommunications infrastructure“. IEEE Communications Magazine 29, Nr. 4 (April 1991): 42–48. http://dx.doi.org/10.1109/35.76557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Building and infrastructure"

1

Chiang, G. T. „Building an eScience infrastructure for environmental science“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597598.

Der volle Inhalt der Quelle
Annotation:
The objective of this project is to build an eScience/grid infrastructure suitable for use with environmental sciences and especially with hydrological science. The infrastructure allows a wide range of hydrological problems to be investigated and is particularly suitable for either computationally intensive or multiple scenario applications. To accomplish this objective, this project discovered the shortcomings of current grid infrastructures for hydrological science and developed missing components to fill this gap. In particular, there were three primary areas which needed work; firstly, integrating data and computing grids; secondly, visualization of geographic information from grid outputs; and thirdly, implementing hydrological simulations based on this infrastructure. A grid infrastructure, which consists of a computing and a data grid, has been built. In addition, the computing grid has been extended to utilize the Amazon cloud computing resources. Users can implement a complete simulation job life cycle form job submission, and data management to metadata management based on this infrastructure. In order to deal with the visualization and metadata within the grid, XMLization is used in this project. I developed a Writing Keyhole Markup Language (WKML), which is a Fortran library allowing enviornemntal scientists to visualize their model outputs in Google Earth. I have also developed a Writing Hydrological Markup Language (WHML) to describe the hydrological data. Finally, an XPath-based tool integrated with RMCS has been developed to extract metadata from XML files. A hydrological scientific pilot project tries to discover whether SHETRAN modelling could be used to predict hydrological behaviour at downstream. The outcomes proved that the SHETRAN synthetic Flood Frequency Curves (FFCs) suggest that simple short-term modelling can be extrapolated to estimate the impact on FFCs of changes in land use/management.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kong, Shui-sun. „Building superhighways in PRC /“. Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18873352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mangione, Anthony F. „Reconciling Craft with Digital Design: Building a New Infrastructure“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448037156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Stefan, Silviu Nicolae. „Develop healthy building infrastructure for KTH LIVE-IN-LAB“. Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217121.

Der volle Inhalt der Quelle
Annotation:
The following master thesis is conducted on behalf of The Royal Institute ofTechnology and KTH Live-in Lab with the purpose of proposing a healthybuilding infrastructure for the KTH Live-in Lab. The Lab will serve as atestbed for products and services that can be tested and veried within anoptimal space that can simulate a real life usage of the tested products or services.Since the KTH Live-in Lab proposes to create a smart environment inorder to fulll its goal, this thesis proposes to design a system that measuresthe key factors that inuence the user's health while living in the building.The problem that this thesis is solving is that of understanding the relevantmetrics that aect the person living in the building, then identify andplace the sensors that can measure the health metrics and nally encapsulatethe result in a WSN, paying close attention to the topology and the communicationprotocols used, capable of monitoring and collecting all the relevantdata for further use.The most dicult part of the thesis is translating the health parametersinto the optimal quantiable metrics so that a developed system couldbecome a feasible solution for a home automation. The attempted way ofsolving this problem is through literature review of health studies in order tounderstand which are the quintessential parameters that should be measured.The system considers dierent health factors from 9 dierent domainsVentilation, Air Quality, Thermal Comfort, Moisture, Dust and Pests, Safetyand Security, Water Quality, Noise and Lighting and Views. Each of thesedomains will be analyzed and the best metrics for monitoring will be selected.The solution will be tailored on the KTH Live-in Lab as the sensor placementis done on the schematic of the Housing Design, of the Fall Semester 2017.In order to choose the optimal way to implement the wireless sensor network,several topologies and communication protocols are compared, the chosen onebeing ZigBee as protocol while the topology was separated in how sensorsare organized in every room which will be a mesh topology and how they areorganized in the whole building for which the chosen topology is the Two-tierhierarchical cluster topology. The system also proposes a security encryptionalgorithm for data protection and a way to evaluate the system based on thestandard of the WELL Building Institute.Future work will consist in implementing all the features that are designedin this paper while nding the perfect trade-o between the cost andtechnology accuracy when this project will be scaled for a whole apartmentbuilding.As a conclusion, there are certain variations that one can follow whenimplementing the designed system as the implementation will be a trade-obetween the quality of the equipment used which translates into the accuracyof the measurements and the nancial and social constraints. This thesisproposes a set of core elements that cannot be replaced in monitoring andalso provides approximations for other less common metrics.
Foljande masteravhandling har utfardats pa uppdrag av The Royal Instituteof Tecnology och KTH Live-in Lab med syftet att foresla en halsosambyggnadsinfrastruktur for KTH Live-in Lab. Labbet kommer att fungerasom en testbadd for produkter och tjanster som kan testas och verierasinom ett optimalt utrymme som kan simuleras till en verklig situation foranvandandet av de testade produkterna eller tjansterna. Eftersom att KTHLive-in Lab foreslar att skapa en smart miljo for att uppfylla sitt mal, foreslardenna avhandling att man designar ett system som mater huvudfaktorernasom paverkar anvandarens halsa under den tid som anvandaren vistas i byggnaden.Det problem som denna avhandling amnar losa ar att skapa en forstaelsefor de relevanta matvarden som paverkar den person som bor i byggnadenoch darefter identiera och placera de sensorer som kan mata halsomatvardenoch slutligen sammanfatta resultatet i en Tradlost sensornatverk, men ocksaagna stor uppmarksamhet till topologin och kommunikationsprotokollen somanvants, som ar kapabla att monitorera och samla all relevant data for vidareanvandning.Det svaraste med denna avhandling ar att oversatta halsoparametrarnatill optimala kvantierbara matvarden sa att ett utvecklat system kan bli engenomforbar losning for en hemautomatisering. Tillvagagangssattet for attlosa detta problem ar genom att granska litteratur om halsostudier for attforsta vilka parametrar som ar vasentliga och som bor matas.Systemet tar hansyn till olika halsofaktorer fran 9 olika domaner; Ventilation,Luftkvalitet, Temperaturkomfort, Fukt, Damm, Sakerhet, Vattenkvalitet,Ljud och Ljus och Syn. Var och en av dessa domaner kommer att analyserasoch de basta matvardena for monitorering kommer att bli utvalda. Losningenkommer att skraddarsys pa KTH Live-in Lab medan sensorplaceringen arutfardad pa schematik av husets design, hostterminen 2017. For att kunnavalja det mest optimala sattet att implementera det tradlosa sensornatverkethar era topologier och kommunikationsprotokoll jamforts. Genom att goradetta har ZigBee valts som kommunikationsprotokoll medan topologin hardelats upp i hur sensorer ar organiserade i varje rum, vilket kommer att varaen "mesh"-topologi, och hur de ar organiserade i hela byggnaden och darav arden valda topologin"Two-tier hierarchial cluster topology". Systemet foreslarocksa en sakerhetskrypteringsalgoritm som dataskydd och som ett satt attutvardera systemen som ar baserade pa standarden av "the WELL BulidingInsitute".Framtida arbete kommer att innefatta implementering av alla funktionersom ar designade i denna avhandling medan det perfekta utbytet mellankostnad och teknologiprecision hittas da detta projekt kommer att skalas foren hel lagenhetsbyggnad.Som slutsats, nns vissa variationer som en kan folja vid implementeringav det designade systemet da implementationen kommer att vara ett utbytemellan kvalitet av utrustningen som anvands som oversatts i noggrannhetav matningar och nansiella och sociala begransningar. Denna avhandlingforeslar ett set av karnelement som inte kan bytas ut i monitorering och somocksa bistar med approximationer for andra mindre vanliga matvarden.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Caceres, Jhon. „Classification of building infrastructure and automatic building footprint delineation using Airborne Laser Swath Mapping data“. [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0023693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Welsh, Joshua. „The St. George Rainway : building community resilience with green infrastructure“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45766.

Der volle Inhalt der Quelle
Annotation:
This thesis was written with cognizance of humanity’s passage into the current epoch: the Anthropocene. Impacts the human species currently have upon the biosphere are physically and chemically altering it to degrees that have crossed thresholds of sustainability. The side effects of this call for resilience to enable healthful transitions into the unstable and unpredictable future. Central to global climate change and central to the profession of landscape architecture is the element: water. The St. George Rainway offers a new opportunity to be a demonstration project for the City of Vancouver where the City and the community of Mount Pleasant act as collaborators with design, construction, and maintenance of a project with water in the public realm. There are three components essential to this work: a community survey, a series of stakeholder and expert interviews, and a design-application of theory using landscape architecture. The survey and interviews establish the local context for the thesis, a baseline for presence of social cohesion, and a framing for the applicability of the ten prominent characteristics of resilient communities. Taken together, the application of design responds to the collective voice and needs of the community and provides a set of goals, phases, strategies for design as a framework to help realize future implementation of the St. George Rainway. The voluntary engagement in the physical transformation of one’s community can provide opportunity for a growth in social cohesion. Subsequently, this growth can improve the conditions that fostered the bonds and bridges within that community that inspired the initial voluntary engagement. Green infrastructure, when considered through this lens, has a reciprocal relationship with social cohesion, where the improvement of one feeds into the improvement of the other. This model could therefore provide both a resilient option for physical development of land and for social development of community for a neighbourhood like Mount Pleasant by encouraging more interaction among neighbours and with the local public realm. The St. George Rainway: Building Community Resilience with Green Infrastructure aims to provide a framework for this.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhu, Xiaoyang. „Building a secure infrastructure for IoT systems in distributed environments“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI038/document.

Der volle Inhalt der Quelle
Annotation:
Le principe de l'Internet des objets (IdO) est d'interconnecter non seulement les capteurs, les appareils mobiles et les ordinateurs, mais aussi les particuliers, les maisons, les bâtiments intelligents et les villes, ainsi que les réseaux électriques, les automobiles et les avions, pour n'en citer que quelques-uns. Toutefois, la réalisation de la connectivité étendue de l'IdO tout en assurant la sécurité et la confidentialité des utilisateurs reste un défi. Les systèmes IdO présentent de nombreuses caractéristiques non conventionnelles, telles que l'évolutivité, l'hétérogénéité, la mobilité et les ressources limitées, qui rendent les solutions de sécurité Internet existantes inadaptées aux systèmes basés sur IdO. En outre, l'IdO préconise des réseaux peer-to-peer où les utilisateurs, en tant que propriétaires, ont l'intention d'établir des politiques de sécurité pour contrôler leurs dispositifs ou services au lieu de s'en remettre à des tiers centralisés. En nous concentrant sur les défis scientifiques liés aux caractéristiques non conventionnelles de l'IdO et à la sécurité centrée sur l'utilisateur, nous proposons une infrastructure sécurisée de l'IdO activée par la technologie de la chaîne de blocs et pilotée par des réseaux peer-to-peer sans confiance. Notre infrastructure sécurisée IoT permet non seulement l'identification des individus et des collectifs, mais aussi l'identification fiable des objets IoT par leurs propriétaires en se référant à la chaîne de blocage des réseaux peer-to-peer sans confiance. La chaîne de blocs fournit à notre infrastructure sécurisée de l'IdO une base de données fiable, immuable et publique qui enregistre les identités individuelles et collectives, ce qui facilite la conception du protocole d'authentification simplifié de l'IdO sans dépendre des fournisseurs d'identité tiers. En outre, notre infrastructure sécurisée pour l'IdO adopte un paradigme d'IdO socialisé qui permet à toutes les entités de l'IdO (à savoir les individus, les collectifs, les choses) d'établir des relations et rend l'IdO extensible et omniprésent les réseaux où les propriétaires peuvent profiter des relations pour définir des politiques d'accès pour leurs appareils ou services. En outre, afin de protéger les opérations de notre infrastructure sécurisée de l'IdO contre les menaces de sécurité, nous introduisons également un mécanisme autonome de détection des menaces en complément de notre cadre de contrôle d'accès, qui peut surveiller en permanence le comportement anormal des opérations des dispositifs ou services
The premise of the Internet of Things (IoT) is to interconnect not only sensors, mobile devices, and computers but also individuals, homes, smart buildings, and cities, as well as electrical grids, automobiles, and airplanes, to mention a few. However, realizing the extensive connectivity of IoT while ensuring user security and privacy still remains a challenge. There are many unconventional characteristics in IoT systems such as scalability, heterogeneity, mobility, and limited resources, which render existing Internet security solutions inadequate to IoT-based systems. Besides, the IoT advocates for peer-to-peer networks where users as owners intend to set security policies to control their devices or services instead of relying on some centralized third parties. By focusing on scientific challenges related to the IoT unconventional characteristics and user-centric security, we propose an IoT secure infrastructure enabled by the blockchain technology and driven by trustless peer-to-peer networks. Our IoT secure infrastructure allows not only the identification of individuals and collectives but also the trusted identification of IoT things through their owners by referring to the blockchain in trustless peer-to-peer networks. The blockchain provides our IoT secure infrastructure with a trustless, immutable and public ledger that records individuals and collectives identities, which facilitates the design of the simplified authentication protocol for IoT without relying on third-party identity providers. Besides, our IoT secure infrastructure adopts socialized IoT paradigm which allows all IoT entities (namely, individuals, collectives, things) to establish relationships and makes the IoT extensible and ubiquitous networks where owners can take advantage of relationships to set access policies for their devices or services. Furthermore, in order to protect operations of our IoT secure infrastructure against security threats, we also introduce an autonomic threat detection mechanism as the complementary of our access control framework, which can continuously monitor anomaly behavior of device or service operations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stenbeck, Torbjörn. „Promoting Innovation in Transportation Infrastructure Maintenance : Incentives Contracting and Performance Based Specifications“. Doctoral thesis, KTH, Bro- och stålbyggnad (byte av engelskt namn 20110630), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4311.

Der volle Inhalt der Quelle
Annotation:
Knowledge of what action that is needed to drive innovation at a desired speed is in demand in civil engineering and its related maintenance. 1. What measures to stimulate innovation have been tested? 2. How much innovation has been achieved by contracting? 3. How much innovation was achieved by performance-based specifications? 4. How can cost models contribute to innovation? Methods include qualitative and quantitative methods that have been timed and mixed to optimize their merits. Sweden, France, USA and Canada have used as research ground. Technology transfer, multi-criteria evaluation, variant bidding, idea mailbox, weatherregulated payment, contests and earmarked funds for innovative projects were some of the method beside and within contracting and performance-based specifications that have been tested. Contracting as such has cut costs in Sweden but not in North America. Neither Sweden nor North America has noticed any increase of innovation, rather the contrary. The savings have primarily been achieved by cuts on staff and by using standardized, less expensive and less advanced machinery. Contracted highway maintenance provinces in Canada and Sweden on average had about 50 % higher costs than inhouse provinces and Washington State. The difference is reduced to 26 %, when corrected by weather and the higher traffic in the contracted provinces. Prestige, politics and competitivity made it difficult to extract economic data from private contractors, and even from the public owners and may explain the contradictory results in previous studies. The internally driven innovation appears small and incentives to innovation weak in inhouse systems, but contrary to expectation even less in contracted systems. Performance-based specifications (PBS), such as Design-Build (DB), have reduced delivery times and kept the budget better than traditional contracts, but quality, lifecycle cost and technical progress was rarely analyzed and even less confirmed in the literature, why a multiple case study was carried out. The result was that three out of four PBS cases delivered lower quality in the long run or showed higher costs already on the opening day, when compared to a traditional contract alternative. Cost models contribute to innovation by making regions with different conditions comparable and provide tools for rational planning and decision making. One model for how highway maintenance costs depend on snow, bridges and traffic and one model for how bridge maintenance costs depend on size and age were elaborated. Models included in contracts, e.g. to allow a contractor to reduce the weather risk, appear to have contributed to a more successful contracting rollout in Sweden than in Canada. France provides experience of how inhouse innovation contests and industry-own patent-like routines can promote innovation. After the first two years with an incentive contract, Banverket received 10 % better quality measured as train delay and 20 % better quality measured as the number of technical errors at no cost. A lesson learnt is that the success of performance-based specifications depends on how well the owner can describe and define the contracts, how compliance is measured and how deviations are handled, i.e. how the contractor is penalized for non-fulfillment or awarded for excess delivery
QC 20100819
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adetola, Alaba Ekekiel. „A conceptual collaborative engagement framework for road infrastructure management in Nigeria“. Thesis, University of Central Lancashire, 2014. http://clok.uclan.ac.uk/10982/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lau, Jasmin. „Building a national technology and innovation infrastructure for an aging society“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38566.

Der volle Inhalt der Quelle
Annotation:
Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2006.
Includes bibliographical references (p. 181-192).
This thesis focuses on the potential of strategic technology innovation and implementation in sustaining an aging society, and examines the need for a comprehensive national technology and innovation infrastructure in the U.S., capable of supporting the development and use of technologies by the aging population and their caregivers. The pervasiveness of population aging makes it a primary concern for nations around the world today. As the inadequacies of existing resources become apparent, policy makers .are now turning to technology and innovation to cope with the changing demographics. 'Technological innovations to accommodate the elderly have existed since centuries ago, and they been useful in extending the human capability beyond perceived limitations of aging. However, new technologies developed with the same objectives are not widely adopted and accepted by the aging population today. The thesis is divided into two complementary sections.
(cont.) The first examines three hypotheses for the slow penetration rates of new technologies for aging: 1) Useful, affordable and usable technologies are unavailable, 2) Professional carers that can play a catalytic role between technological innovation and implementation are not technologically educated and prepared to incorporate the technologies into elderly care, and 3) The dynamics of policy formation and agenda setting are not conducive to the design and implementation of "technology for aging" policies. The second section consists of two comparative studies to highlight the gaps within the existing "technologies for aging" industry infrastructure. A study of the domestic automobile and mobile telecommunications industry provides a national perspective, whereas a study of eleven industrialized nations engaged in technological innovations for the elderly provides an international perspective. The research shows that useful, affordable and usable technologies are available, but their diffusion is hindered by inadequate human capital development and an unconducive policy formation and agenda setting climate.
(cont.) The comparative studies further illuminate existing infrastructure gaps and also provide useful frameworks to facilitate the bridging of these gaps. By facilitating the development of a robust "technology for aging" infrastructure, policy makers can help to ensure that the U.S. is ready to meet the challenges of an aging population.
by Jasmin Lau.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Building and infrastructure"

1

Hegering, Heinz-Gerd. Ethernet: Building a communications infrastructure. Wokingham, England: Addison-Wesley, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

P, Flanzer Jerry, und Zlotnik Joan Levy, Hrsg. Building research culture and infrastructure. New York, NY: Oxford University Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mehta, Pradeep S. Capacity building on infrastructure regulatory issues. Jaipur: CUTS Centre for Competition, Investment & Economic Regulation, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yeluri, Raghu, und Enrique Castro-Leon. Building the Infrastructure for Cloud Security. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6146-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cable communications: Building the information infrastructure. New York: McGraw-Hill, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Green, Harry A. Building Tennessee's tomorrow: A survey of infrastructure needs. [Nashville, Tenn.]: Tennessee Advisory Commission on Intergovernmental Relations, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fenner, Richard (Richard A.), author, Hrsg. Sustainable infrastructure: Principles into practice. London: ICE Publishing, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rebecca, Mayer, Minges Michael, Foster Vivien 1968-, Briceño-Garmendia Cecilia und World Bank, Hrsg. Africa's ICT infrastructure: Building on the mobile revolution. Washington, D.C: World Bank, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

name, No. Highway engineering handbook: Building and rehabilitating the infrastructure. 2. Aufl. New York, NY: McGraw-Hill, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Infrastructure: Building a framework for corporate information handling. New York: Prentice Hall, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Building and infrastructure"

1

Nadon, Jason. „Building the Infrastructure“. In Website Hosting and Migration with Amazon Web Services, 153–66. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2589-9_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McClelland-Kerr, John, und Rebecca Stevens. „Building Safeguards Infrastructure“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 13–18. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3504-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Iyer-Raniga, Usha, und Karishma Kashyap. „Green Building“. In Industry, Innovation and Infrastructure, 1–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-71059-4_20-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Keane, Conor. „Infrastructure Development“. In US Nation-Building in Afghanistan, 111–37. Farnham, Surrey, UK; Burlington, VT: Ashgate, 2016.: Routledge, 2016. http://dx.doi.org/10.4324/9781315548623-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fox, Richard, und Wei Hao. „Case Study: Building Local Area Networks“. In Internet Infrastructure, 43–79. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315175577-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Demostenez, Mori-Pelaez, Aldo Alvarez-Risco und Shyla Del-Aguila-Arcentales. „Sustainability of Urban Infrastructure“. In Building Sustainable Cities, 167–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45533-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Firehock, Karen. „Building Community Support“. In Strategic Green Infrastructure Planning, 103–13. Washington, DC: Island Press/Center for Resource Economics, 2015. http://dx.doi.org/10.5822/978-1-61091-693-6_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chandrappa, Ramesha, und Diganta Bhusan Das. „Building and Changing Infrastructure“. In Environmental Health - Theory and Practice, 181–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64484-0_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jin, Cheng, Sugih Jamin, Danny Raz und Yuval Shavitt. „The IDMaps Measurement Infrastructure“. In Building Scalable Network Services, 5–30. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8897-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jakóbczyk, Michał Tomasz. „Building Your First Cloud Application“. In Practical Oracle Cloud Infrastructure, 49–116. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5506-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Building and infrastructure"

1

Dam, Steven, Keith A. Taggart, Alex Thatcher und Heath Rezabeck. „Building Commercial Space Infrastructure“. In SpaceOps 2014 Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kelkar, Natasha. „Building modern VFX infrastructure“. In SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3306307.3328194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tripathi, Ravi, William Stonewall Monroe, Mike Hanby und John-Paul Robinson. „Building a Scalable Infrastructure“. In PEARC '20: Practice and Experience in Advanced Research Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3311790.3399620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dongre, P., und N. Roofigari-Esfahan. „Occupant-Building Interaction (OBI) Model for University Buildings“. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC). ICE Publishing, 2019. http://dx.doi.org/10.1680/icsic.64669.631.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jesi, Gian Paolo, Elisabetta Gori, Stefano Micocci und Gianluca Mazzini. „Building Lepida ScpA BigData Infrastructure“. In 2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE). IEEE, 2019. http://dx.doi.org/10.1109/bdkcse48644.2019.9010604.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Phibbs, Peter. „Building Marine Infrastructure for Science“. In OCEANS 2008. IEEE, 2008. http://dx.doi.org/10.1109/oceans.2008.5152079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Riordan, R. E. „Building The Loop Fiber Infrastructure“. In OE/FIBERS '89, herausgegeben von Joseph Garodnick, Lynn D. Hutcheson und David A. Kahn. SPIE, 1990. http://dx.doi.org/10.1117/12.963430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Akaa, Obinna, Anthony Abu und Michael Spearpoint. „Application of Group Analytic Technique in the design decision-making process for a steel building in fire“. In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0745.

Der volle Inhalt der Quelle
Annotation:
<p>This paper presents how group analytic technique (GAT) may be used to approach complex design decision-making using an exemplar steel portal-framed building exposed to a potentially destructive fire. Chartered stakeholder views on the building’s structural fire design attributes were extracted to determine qualitative priorities for selecting a suitable applied fire protection solution. Fire pro- tection costs and structural fire resistance have been numerically and probabilistically assessed re- garding the design of one of the building’s columns. The assessment outcomes have been inte- grated/synthesised through GAT. The results show the logical analyses of varying design objectives in approaching an optimal solution to resilient steel buildings and establish the viability of the tech- nique. The result also shows that unprotecting structural elements of the building was ranked as the best solution.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barre, F., A. Chiquard, S. Faure, L. Landais und P. Patry. „OLED study for military applications“. In Workshop on Building European OLED Infrastructure, herausgegeben von Thomas P. Pearsall und Jonathan Halls. SPIE, 2005. http://dx.doi.org/10.1117/12.631343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Marheineke, Bastian. „OVPD: OLED manufacturing coming of age“. In Workshop on Building European OLED Infrastructure, herausgegeben von Thomas P. Pearsall und Jonathan Halls. SPIE, 2005. http://dx.doi.org/10.1117/12.628987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Building and infrastructure"

1

Goulde, Michael. Building Infrastructure with Integrated Stacks. Boston, MA: Patricia Seybold Group, November 2004. http://dx.doi.org/10.1571/psgp11-18-04cc.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sitzler, D., P. Smith und A. Marine. Building a Network Information Services Infrastructure. RFC Editor, Februar 1992. http://dx.doi.org/10.17487/rfc1302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kalos, Malvin H., und Jeffrey Silber. Building a High-Speed Networking Infrastructure. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Warren, James A., und Ronald F. Boisvert. Building the Materials Innovation Infrastructure: Data and Standards. Gaithersburg, MD: National Institute of Standards and Technology, November 2012. http://dx.doi.org/10.6028/nist.ir.7898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lucas, Randolph, Pablo Destefanis, Craig Hollingsworth, Mary-Anne Ardini-Poleske und Martha DeCain. Building a Data Infrastructure for Conducting Research in Ukraine. Research Triangle Park, NC: RTI Press, September 2010. http://dx.doi.org/10.3768/rtipress.2010.mr.0012.1009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cooper, M., Y. Dzambasow, P. Hesse, S. Joseph und R. Nicholas. Internet X.509 Public Key Infrastructure: Certification Path Building. RFC Editor, September 2005. http://dx.doi.org/10.17487/rfc4158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Womble, D. E., und D. S. Greenberg. Massively parallel I/O: Building an infrastructure for parallel computing. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/468615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

DeCristofaro, Nicholas. Utilization of CO2 in High Performance Building and Infrastructure Products. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1301860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hutchins, Margot J., Derek H. Hart, Jason E. Stamp und Robert Forrest. Building the Scientific Basis for Cyber Resilience of Critical Infrastructure. Office of Scientific and Technical Information (OSTI), Juli 2016. http://dx.doi.org/10.2172/1603854.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Allen, Adriana, Donald Brown, Julio Davila und Pascale Hofmann. Topic Guide: Building reciprocal rural-urban linkages through infrastructure investment and development. Evidence on Demand, Mai 2015. http://dx.doi.org/10.12774/eod_tg.allenaetal.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie