Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Brownian motion processes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Brownian motion processes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Brownian motion processes"
Suryawan, Herry P., und José L. da Silva. „Green Measures for a Class of Non-Markov Processes“. Mathematics 12, Nr. 9 (27.04.2024): 1334. http://dx.doi.org/10.3390/math12091334.
Der volle Inhalt der QuelleTakenaka, Shigeo. „Integral-geometric construction of self-similar stable processes“. Nagoya Mathematical Journal 123 (September 1991): 1–12. http://dx.doi.org/10.1017/s0027763000003627.
Der volle Inhalt der QuelleRosen, Jay, und Jean-Dominique Deuschel. „motion, super-Brownian motion and related processes“. Annals of Probability 26, Nr. 2 (April 1998): 602–43. http://dx.doi.org/10.1214/aop/1022855645.
Der volle Inhalt der QuelleRao, Nan, Qidi Peng und Ran Zhao. „Cluster Analysis on Locally Asymptotically Self-Similar Processes with Known Number of Clusters“. Fractal and Fractional 6, Nr. 4 (14.04.2022): 222. http://dx.doi.org/10.3390/fractalfract6040222.
Der volle Inhalt der QuelleSOTTINEN, TOMMI, und LAURI VIITASAARI. „CONDITIONAL-MEAN HEDGING UNDER TRANSACTION COSTS IN GAUSSIAN MODELS“. International Journal of Theoretical and Applied Finance 21, Nr. 02 (März 2018): 1850015. http://dx.doi.org/10.1142/s0219024918500152.
Der volle Inhalt der QuelleAndres, Sebastian, und Lisa Hartung. „Diffusion processes on branching Brownian motion“. Latin American Journal of Probability and Mathematical Statistics 15, Nr. 2 (2018): 1377. http://dx.doi.org/10.30757/alea.v15-51.
Der volle Inhalt der QuelleOuknine, Y. „“Skew-Brownian Motion” and Derived Processes“. Theory of Probability & Its Applications 35, Nr. 1 (Januar 1991): 163–69. http://dx.doi.org/10.1137/1135018.
Der volle Inhalt der QuelleKatori, Makoto, und Hideki Tanemura. „Noncolliding Brownian Motion and Determinantal Processes“. Journal of Statistical Physics 129, Nr. 5-6 (13.10.2007): 1233–77. http://dx.doi.org/10.1007/s10955-007-9421-y.
Der volle Inhalt der QuelleJedidi, Wissem, und Stavros Vakeroudis. „Windings of planar processes, exponential functionals and Asian options“. Advances in Applied Probability 50, Nr. 3 (September 2018): 726–42. http://dx.doi.org/10.1017/apr.2018.33.
Der volle Inhalt der QuelleAdler, Robert J., und Ron Pyke. „Scanning Brownian Processes“. Advances in Applied Probability 29, Nr. 2 (Juni 1997): 295–326. http://dx.doi.org/10.2307/1428004.
Der volle Inhalt der QuelleDissertationen zum Thema "Brownian motion processes"
Dunkel, Jörn. „Relativistic Brownian motion and diffusion processes“. kostenfrei, 2008. http://d-nb.info/991318757/34.
Der volle Inhalt der QuelleTrefán, György. „Deterministic Brownian Motion“. Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279262/.
Der volle Inhalt der QuelleKeprta, S. „Integral tests for Brownian motion and some related processes“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf.
Der volle Inhalt der QuelleKeprta, Stanislav Carleton University Dissertation Mathematics and Statistics. „Integral tests for Brownian motion and some related processes“. Ottawa, 1997.
Den vollen Inhalt der Quelle findenCakir, Rasit Grigolini Paolo. „Fractional Brownian motion and dynamic approach to complexity“. [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3992.
Der volle Inhalt der QuelleSimon, Matthieu. „Markov-modulated processes: Brownian motions, option pricing and epidemics“. Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250010.
Der volle Inhalt der QuelleDoctorat en Sciences
info:eu-repo/semantics/nonPublished
莊競誠 und King-sing Chong. „Explorations in Markov processes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31235682.
Der volle Inhalt der QuelleChong, King-sing. „Explorations in Markov processes /“. Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736105.
Der volle Inhalt der QuelleDuncan, Thomas. „Brownian Motion: A Study of Its Theory and Applications“. Thesis, Boston College, 2007. http://hdl.handle.net/2345/505.
Der volle Inhalt der QuelleThe theory of Brownian motion is an integral part of statistics and probability, and it also has some of the most diverse applications found in any topic in mathematics. With extensions into fields as vast and different as economics, physics, and management science, Brownian motion has become one of the most studied mathematical phenomena of the late twentieth and early twenty-first centuries. Today, Brownian motion is mostly understood as a type of mathematical process called a stochastic process. The word "stochastic" actually stems from the Greek word for "I guess," implying that stochastic processes tend to produce uncertain results, and Brownian motion is no exception to this, though with the right models, probabilities can be assigned to certain outcomes and we can begin to understand these complicated processes. This work reaches to attain this goal with regard to Brownian motion, and in addition it explores several applications found in the aforementioned fields and beyond
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
Hult, Henrik. „Topics on fractional Brownian motion and regular variation for stochastic processes“. Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3604.
Der volle Inhalt der QuelleThe first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived.
The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittles approach is applied to derive anestimator for all unknown parameters.
Bücher zum Thema "Brownian motion processes"
1972-, Dolgopyat Dmitry, Hrsg. Brownian Brownian motion-I. Providence, R.I: American Mathematical Society, 2009.
Den vollen Inhalt der Quelle findenWiersema, Ubbo F. Brownian motion calculus. Chichester: John Wiley & Sons, 2008.
Den vollen Inhalt der Quelle findenWiersema, Ubbo F. Brownian Motion Calculus. New York: John Wiley & Sons, Ltd., 2008.
Den vollen Inhalt der Quelle findenSchilling, René L. Brownian motion: An introduction to stochastic processes. Berlin: De Gruyter, 2012.
Den vollen Inhalt der Quelle findenLindstrøm, Tom. Brownian motion on nested fractals. Providence, R.I., USA: American Mathematical Society, 1990.
Den vollen Inhalt der Quelle findenEarnshaw, Robert C., und Elizabeth M. Riley. Brownian motion: Theory, modelling and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenBass, Richard F. Cutting Brownian paths. Providence, R.I: American Mathematical Society, 1999.
Den vollen Inhalt der Quelle findenKaratzas, Ioannis. Brownian motion and stochastic calculus. 2. Aufl. New York: Springer, 1996.
Den vollen Inhalt der Quelle findenE, Shreve Steven, Hrsg. Brownian motion and stochastic calculus. New York: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenE, Shreve Steven, Hrsg. Brownian motion and stochastic calculus. 2. Aufl. New York: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Brownian motion processes"
Rozanov, Yuriĭ A. „Brownian Motion“. In Introduction to Random Processes, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72717-7_5.
Der volle Inhalt der QuelleResnick, Sidney I. „Brownian Motion“. In Adventures in Stochastic Processes, 482–557. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0387-2_6.
Der volle Inhalt der QuelleKorosteleva, Olga. „Brownian Motion“. In Stochastic Processes with R, 153–82. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003244288-9.
Der volle Inhalt der QuelleKoralov, Leonid, und Yakov G. Sinai. „Brownian Motion“. In Theory of Probability and Random Processes, 253–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-68829-7_18.
Der volle Inhalt der QuelleHainaut, Donatien. „Fractional Brownian Motion“. In Continuous Time Processes for Finance, 143–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06361-9_6.
Der volle Inhalt der QuelleMadhira, Sivaprasad, und Shailaja Deshmukh. „Brownian Motion Process“. In Introduction to Stochastic Processes Using R, 487–545. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5601-2_9.
Der volle Inhalt der QuelleItô, Kiyosi, und Henry P. McKean. „The standard Brownian motion“. In Diffusion Processes and their Sample Paths, 5–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62025-6_2.
Der volle Inhalt der QuelleBas, Esra. „Introduction to Brownian Motion“. In Basics of Probability and Stochastic Processes, 253–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32323-3_16.
Der volle Inhalt der QuelleBosq, Denis, und Hung T. Nguyen. „Brownian Motion and Diffusion Processes“. In A Course in Stochastic Processes, 233–53. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8769-3_12.
Der volle Inhalt der QuelleKallenberg, Olav. „Gaussian Processes and Brownian Motion“. In Probability and Its Applications, 249–69. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-4015-8_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Brownian motion processes"
Bilokon, Paul, und Abbas Edalat. „A domain-theoretic approach to Brownian motion and general continuous stochastic processes“. In CSL-LICS '14: JOINT MEETING OF the Twenty-Third EACSL Annual Conference on COMPUTER SCIENCE LOGIC. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2603088.2603102.
Der volle Inhalt der QuelleBorhani, Alireza, und Matthias Patzold. „Modelling of non-stationary mobile radio channels using two-dimensional brownian motion processes“. In 2013 International Conference on Advanced Technologies for Communications (ATC 2013). IEEE, 2013. http://dx.doi.org/10.1109/atc.2013.6698114.
Der volle Inhalt der QuelleCezayirli, Ahmet. „Simulation of online relative concentration measurements in chemical processes using Brownian motion and image processing“. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020. http://dx.doi.org/10.1109/ismsit50672.2020.9254637.
Der volle Inhalt der QuelleBusnaina, Ahmed, Xiaoying Zhu und Xiaowei Zheng. „Particle Transport in CVD and Diffusion Processes“. In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0057.
Der volle Inhalt der QuellePerez Rey, Luis A., Vlado Menkovski und Jim Portegies. „Diffusion Variational Autoencoders“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/375.
Der volle Inhalt der QuelleTian, L., G. Ahmadi und J. Y. Tu. „Multi-Scale Transport Modeling: Asbestos and Nano Fibers in Inhalation Risk Assessments“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69083.
Der volle Inhalt der QuelleZare, Azam, Omid Abouali und Goodarz Ahmadi. „A Numerical Model for Brownian Motions of Nano-Particles in Supersonic and Hypersonic Impactors“. In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98308.
Der volle Inhalt der QuelleMacGibbon, Bruce S., und Ahmed A. Busnaina. „Mass Transport and Particle Transport in an LPCVD Process“. In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0027.
Der volle Inhalt der QuellePerez, Dario G., und Luciano Zunino. „Inner- and outer-scales of turbulent wavefront phase defined through the lens of multi-scale Levy fractional Brownian motion processes“. In SPIE Remote Sensing, herausgegeben von Anton Kohnle, Karin Stein und John D. Gonglewski. SPIE, 2008. http://dx.doi.org/10.1117/12.800155.
Der volle Inhalt der QuelleTakana, Hidemasa, Kazuhiro Ogawa, Tetsuo Shoji und Hideya Nishiyama. „Optimization of Cold Gas Dynamic Spray Processes by Computational Simulation“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37081.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Brownian motion processes"
Adler, Robert J., und Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada274696.
Der volle Inhalt der QuelleAdler, Robert J., und Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, Januar 1994. http://dx.doi.org/10.21236/ada275124.
Der volle Inhalt der QuelleСоловйов, В. М., В. В. Соловйова und Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Der volle Inhalt der Quelle