Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Brittle behaviour“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Brittle behaviour" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Brittle behaviour"
Banerjee, Rajat, und Bikas K. Chakrabarti. „Critical fatigue behaviour in brittle glasses“. Bulletin of Materials Science 24, Nr. 2 (April 2001): 161–64. http://dx.doi.org/10.1007/bf02710094.
Der volle Inhalt der QuelleVallet, D., und J. C. Charmet. „Mechanical behaviour of brittle cement grains“. Journal of Materials Science 30, Nr. 11 (Juni 1995): 2962–67. http://dx.doi.org/10.1007/bf00349670.
Der volle Inhalt der QuelleDlouhý, Ivo, Zdeněk Chlup und Aldo Roberto Boccaccini. „Fracture Behaviour of Brittle (Glass) Matrix Composites“. Materials Science Forum 482 (April 2005): 115–22. http://dx.doi.org/10.4028/www.scientific.net/msf.482.115.
Der volle Inhalt der QuelleXiao, Xiaolan, Jiayun Deng, Qiang Xiong, Qiusheng Yan, Zhengtao Wu und Huatay Lin. „Scratch Behaviour of Bulk Silicon Nitride Ceramics“. Micromachines 12, Nr. 6 (16.06.2021): 707. http://dx.doi.org/10.3390/mi12060707.
Der volle Inhalt der QuelleXicheng, Huang, Li Shangkun, Qiang Wei, Chen Gang, Tian Rong und Wang Lixiang. „Numerical Simulation of Crack Initiation and Growth in PBX High Explosive Subject to Compression“. EPJ Web of Conferences 183 (2018): 01019. http://dx.doi.org/10.1051/epjconf/201818301019.
Der volle Inhalt der QuelleMaeno, Keiki, Masaki Tanaka, Kenji Higashida, Masahiro Fujikura und Kohsaku Ushioda. „The Brittle-to-Ductile Transition Behaviour in Fe-Al Single Crystalline Alloys“. Advanced Materials Research 409 (November 2011): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amr.409.243.
Der volle Inhalt der QuelleTraidi, Khalil, Véronique Favier, Philippe Lestriez, Karl Debray, Laurent Langlois und Tudor Balan. „Modelling Semi-Solid Behaviour and Brittle Temperature Range“. Solid State Phenomena 285 (Januar 2019): 361–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.285.361.
Der volle Inhalt der QuelleRenshaw, Carl E., und Erland M. Schulson. „Universal behaviour in compressive failure of brittle materials“. Nature 412, Nr. 6850 (August 2001): 897–900. http://dx.doi.org/10.1038/35091045.
Der volle Inhalt der QuelleWebster, S. E., und P. H. Bateson. „Significance of local brittle zones to structural behaviour“. Materials Science and Technology 9, Nr. 1 (Januar 1993): 83–92. http://dx.doi.org/10.1179/mst.1993.9.1.83.
Der volle Inhalt der QuelleSieber, Lars, und Richard Stroetmann. „The brittle fracture behaviour of old mild steels“. Procedia Structural Integrity 5 (2017): 1019–26. http://dx.doi.org/10.1016/j.prostr.2017.07.160.
Der volle Inhalt der QuelleDissertationen zum Thema "Brittle behaviour"
Yang, Xiao-Feng. „Aspects of the mechanical behaviour of unidirectional brittle fibre-reinforced brittle matrices“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239805.
Der volle Inhalt der QuelleRolo, Reinaldo. „The anisotropic stress-strain-strength behaviour of brittle sediments“. Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/8239.
Der volle Inhalt der QuelleYu, Qifeng 1977. „Computational simulations of shear behaviour of joints in brittle geomaterials“. Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=34003.
Der volle Inhalt der QuelleLandschoff, Jannes. „Brooding behaviour in Ophioderma wahlbergii, a shallow-water brittle star from South Africa“. Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13380.
Der volle Inhalt der QuelleThe brooding behaviour and brooded young are described for Ophioderma wahlbergii Müller & Troschel 1842, a large, common brittle star from the coastal waters of South Africa. Twenty specimens were collected each month from June 2013 – May 2014 (n = 240). The species was found to be gonochoric.
Chia, Julian Yan Hon. „A micromechanics-based continuum damage mechanics approach to the mechanical behaviour of brittle matrix composites“. Thesis, University of Glasgow, 2002. http://theses.gla.ac.uk/2856/.
Der volle Inhalt der QuelleRangasamy, Mahendren Sharan Raj. „Thermomechanical behaviour of multi-cracked brittle media taking into account unilateral effects : theoretical and numerical approaches“. Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0070.
Der volle Inhalt der QuelleMicromechanical and numerical methods are explored to predict the effective thermal and thermoelastic properties of a microcracked media. The effective properties are given in 2D and3D. In this thesis, special attention is paid to the anisotropy, induced by the orientation of the cracks and the unilateral effect related to the opening and closing of the cracks. The cracks aremodelled as ellipsoidal inclusions. The open cracks are considered to have no stiffness and to be thermally insulating, whereas the closed cracks are represented by a fictitious isotropic material.The theoretical approach takes advantage of various homogenization schemes and bounds to derive closed-form expressions of effective properties. The numerical approach considers finiteelement modelling and is based on the same geometry and properties of cracks as in the theory. Finally, results are compared to demonstrate the consistency between the two approaches
Aboubakr, Attitou Amen Mohamed [Verfasser]. „Behaviour study of grouted connection for offshore wind turbine structures with brittle cement based grouts / Attitou Amen Mohamed Aboubakr“. Kassel : Universitätsbibliothek Kassel, 2020. http://d-nb.info/1208531697/34.
Der volle Inhalt der QuelleVadluga, Vaidas. „Simulation of dynamic deformation and fracture behaviour of heterogeneous structures by discrete element method“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080213_082157-83281.
Der volle Inhalt der QuelleTyrimų sritis ir darbo aktualumas. Kuriant modernias ��vairios paskirties mechanines sistemas, technologijas ir įrangą, svarbiomis tampa jas sudarančios medžiagos. Savaime suprantama, kad žinomos ir naujai kuriamos medžiagos dabar kur kas išsamiau nagrinėjamos daugelyje mokslo šakų, įskaitant ir me-džiagų mechaniką. Visos medžiagos mezo- ir mikrostruktūros požiūriu yra ne-vienalytės. Jų mikroskopinės savybės skirtingos, lyginant su įprastu kontinuu-mu. Medžiagų savybėms tirti dažniausiai taikomi eksperimentiniai metodai. Eksperimentiniais metodais ištirti medžiagos struktūras ir jose vykstančius procesus ir įvertinti tam tikras jų savybes labai brangu. Tai viena priežasčių, kodėl skaitinis modeliavimas tampa realia tyrimų alternatyva. Skaitinį eksperi-mentą galima kartoti daug kartų, valdant bandinio parametrus, išlaikant tas pa-čias sąlygas, ir stebėti reiškiniui būdingus rodiklius visame tūryje. Šiuolaikiniai modeliavimo metodai yra kompleksiniai. Jie jungia fenome-nologines ir statistines idėjas, o matematiniai modeliai sudaromi taikant konti-nuumo mechanikos ir jų diskrečiųjų modelių bei molekulinės dinamikos pri-klausomybes. Diskrečiųjų elementų metodas (DEM) taip pat priskiriamas šiuo-laikinių metodų kategorijai. Jis skirtas kontaktuojančių dalelių sistemų dinami-niam modeliavimui. Kintanti dalelių sistemos topologija – būdingas metodo požymis. Pastaruoju metu DEM jau taikomas kontinuumui modeliuoti ir praktikoje aktualiems irimo uždaviniams spręsti. Reikia pastebėti... [toliau žr. visą tekstą]
Brahmachari, Koushik, of Western Sydney Hawkesbury University, of Science Technology and Agriculture Faculty und School of Construction and Building Sciences. „Connection and flexural behaviour of steel RHS filled with high strength concrete“. THESIS_FTA_CBS_BRAHMACHARI_K.xml, 1997. http://handle.uws.edu.au:8081/1959.7/526.
Der volle Inhalt der QuelleDoctor of Philosophy (PhD)
Brahmachari, Koushik. „Connection and flexural behaviour of steel RHS filled with high strength concrete“. Thesis, View thesis, 1997. http://handle.uws.edu.au:8081/1959.7/526.
Der volle Inhalt der QuelleBücher zum Thema "Brittle behaviour"
Mitton, David. A Cow on the line and other Thomas the tank engine stories ; photographs by David Mitton and Terry Permane for Britt Allcroft's production of Thomas the Tank Engine and friends. New York: Random House, 1992.
Den vollen Inhalt der Quelle findenKenis, Ilse. Brittle-ductile Deformation Behaviour in the Middle Crust: As Exemplified by Mullions (Former "Boudins") in the High-ardenne Slate Belt, Belgium (Aardkundige Mededelingen). Leuven Univ Pr, 2004.
Den vollen Inhalt der Quelle findenTanaka, H. Phase separation in soft matter: the concept of dynamic asymmetry. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198789352.003.0015.
Der volle Inhalt der QuelleL, Blumberg Selinger Robin, Hrsg. Fracture: Instability dynamics, scaling, and ductile/brittle behavior. Pittsburgh, Pa: Materials Research Society, 1996.
Den vollen Inhalt der Quelle findenKim, Kyung-Suk, Michael P. Marder, Glenn E. Beltz und Robin L. Blumberg Selinger. Fracture and Ductile vs. Brittle Behavior Vol. 539: Theory, Modelling and Experiment. University of Cambridge ESOL Examinations, 2014.
Den vollen Inhalt der Quelle findenT, Read D., und National Institute of Standards and Technology (U.S.), Hrsg. Fracture behavior of a pressure vessel steel in the ductile-to-brittle transition region. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Den vollen Inhalt der Quelle findenT, Read D., und National Institute of Standards and Technology (U.S.), Hrsg. Fracture behavior of a pressure vessel steel in the ductile-to-brittle transition region. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Den vollen Inhalt der Quelle findenBažant, Zdenek P., Jia-Liang Le und Marco Salviato. Quasibrittle Fracture Mechanics and Size Effect. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846242.001.0001.
Der volle Inhalt der QuelleThe effect of various metallurgical parameters on the flow and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenThe effect of various metallurgical parameters on the flow and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Brittle behaviour"
François, Dominique, André Pineau und André Zaoui. „Brittle Fracture“. In Mechanical Behaviour of Materials, 103–91. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4930-6_3.
Der volle Inhalt der QuelleFrançois, Dominique, André Pineau und André Zaoui. „Ductile-Brittle Transition“. In Mechanical Behaviour of Materials, 265–305. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4930-6_5.
Der volle Inhalt der QuelleHamelin, P., und P. Matray. „Mechanical Behaviour of Cement Based Composites“. In Brittle Matrix Composites 3, 335–43. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_36.
Der volle Inhalt der QuelleAllix, O., D. Gilletta und P. Ladeveze. „Non Linear Mechanical Behaviour of Laminates“. In Brittle Matrix Composites 1, 227–40. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4319-3_15.
Der volle Inhalt der QuelleKasperkiewicz, Janusz, Piet Stroeven und Dik Dalhuisen. „Fracture Behaviour of Plain Concrete in Bending“. In Brittle Matrix Composites 2, 506–15. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2544-1_52.
Der volle Inhalt der QuelleLaksimi, A., und C. Bathias. „Fracture Mechanics Behaviour of Glass Cloth/Epoxy Composites“. In Brittle Matrix Composites 1, 263–86. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4319-3_17.
Der volle Inhalt der QuelleBasista, M. „Micromechanics of Damage in Brittle Solids“. In Anisotropic Behaviour of Damaged Materials, 221–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36418-4_7.
Der volle Inhalt der QuelleMoczko, Andrzej. „The Age Effect in Cracking Behaviour of Plain Concrete“. In Brittle Matrix Composites 3, 240–47. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_26.
Der volle Inhalt der QuelleTurwitt, M., G. Elssner und G. Petzow. „On the Fracture Behaviour of Metal-to-Ceramic Joints“. In Brittle Matrix Composites 1, 169–83. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4319-3_10.
Der volle Inhalt der QuelleLauf, S., und R. F. Pabst. „Fatigue Behaviour of SiSiC Composite Structures at Elevated Temperature“. In Brittle Matrix Composites 1, 151–67. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4319-3_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Brittle behaviour"
Kuijpers, Jan, Dave Roberts und John Napier. „Modelling of Brittle Pillar Behaviour“. In First Southern Hemisphere International Rock Mechanics Symposium. Australian Centre for Geomechanics, Perth, 2008. http://dx.doi.org/10.36487/acg_repo/808_89.
Der volle Inhalt der QuelleWang, H. Y., J. Shu, Y. L. Bai, M. F. Xia und F. J. Ke. „Catastrophic rupture of heterogeneous brittle materials under impact loading“. In DYMAT 2009 - 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/dymat/2009132.
Der volle Inhalt der QuelleStroetmann, Richard, und Lars Sieber. „Assessment of the brittle fracture behaviour of old mild steel structures“. In IABSE Symposium, Vancouver 2017: Engineering the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2017. http://dx.doi.org/10.2749/vancouver.2017.2559.
Der volle Inhalt der QuelleBergonzini, E., G. Bolelli, B. Bonferroni, L. Lusvarghi, T. Varis, U. Kanerva, T. Suhonen, J. Oksanen, O. Söderberg und S. P. Hannula. „Wear Behaviour of HVOF-Sprayed Nanostructured WC-CoCr Coatings“. In ITSC2011, herausgegeben von B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0590.
Der volle Inhalt der QuelleEschenauer, H. A., und T. Vietor. „Aspects in the Shape Optimization Using Brittle and Ductile Materials“. In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0100.
Der volle Inhalt der QuelleBansal, P., P. H. Shipway und S. B. Leen. „Finite Element Modelling of Acoustic Emission Behaviour of Thermally Sprayed WC-Co Coatings“. In ITSC2005, herausgegeben von E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0320.
Der volle Inhalt der QuelleLassen, Tom. „Mooring Line Components With Semi-Brittle Behavior: Verification of Fitness for Purpose“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49231.
Der volle Inhalt der QuelleRabczuk, T., B. Bezensek und S. Bordas. „Application of Extended Element-Free Galerkin Method to Multiple Flaws Under Brittle Fracture Conditions“. In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61550.
Der volle Inhalt der QuelleMirzaee-Sisan, Ali, Saeid Hadidi-Moud und David John Smith. „Comparison of Methods for Predicting the Influence of Residual Stresses on Brittle Fracture“. In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26712.
Der volle Inhalt der QuelleMartin, Gre´goire, Patrick Hornet, Mustafa Koc¸ak und Afshin K. Motarjemi. „Fracture Behaviour of Mis-Matched Dissimilar Welds: Experimental Results“. In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1099.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Brittle behaviour"
Freund, L. B. Dynamic Behavior of Brittle Materials. Fort Belvoir, VA: Defense Technical Information Center, Juli 1999. http://dx.doi.org/10.21236/ada369852.
Der volle Inhalt der QuelleVoorhees, Travis John. Investigating the Shock Compaction Behavior of Brittle Powders. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1469501.
Der volle Inhalt der QuelleVoorhees, Travis John. Investigating the Dynamic Compaction Behavior of Brittle Powders. Office of Scientific and Technical Information (OSTI), März 2019. http://dx.doi.org/10.2172/1498011.
Der volle Inhalt der QuelleHeerens, Jurgen, und D. T. Reed. Fracture behavior of a pressure vessel steel in the ductile-to-brittle transition region. Gaithersburg, MD: National Institute of Standards and Technology, 1988. http://dx.doi.org/10.6028/nist.ir.88-3099.
Der volle Inhalt der QuelleChung, H. M., L. J. Nowicki und D. E. Busch. Ductile-brittle transition behavior of V-4Cr-4Ti irradiated in the dynamic helium charging experiment. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/115709.
Der volle Inhalt der QuelleKurtz, R. J., M. L. Hamilton und H. Li. Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/335371.
Der volle Inhalt der QuelleLever, James, Emily Asenath-Smith, Susan Taylor und Austin Lines. Assessing the mechanisms thought to govern ice and snow friction and their interplay with substrate brittle behavior. Engineer Research and Development Center (U.S.), Dezember 2021. http://dx.doi.org/10.21079/1168142742.
Der volle Inhalt der QuelleBowman, Mark. Fatigue Behavior of Beam Diaphragm Connections with Intermittent Fillet Welds: Part II, Brittle Fracture Examination of the I-64 Blue River Bridge. West Lafayette, IN: Purdue University, 2002. http://dx.doi.org/10.5703/1288284313224.
Der volle Inhalt der QuelleINVESTIGATION OF BEHAVIOR OF INTERIOR STEEL CONNECTIONS WITH OPENINGS IN BEAM WEB AND FLANGE UNDER MONOTONIC LOADING. The Hong Kong Institute of Steel Construction, Dezember 2021. http://dx.doi.org/10.18057/ijasc.2021.17.4.2.
Der volle Inhalt der QuelleTENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.313.
Der volle Inhalt der Quelle