Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Branching Markov chains“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Branching Markov chains" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Branching Markov chains"
Müller, Sebastian. „Recurrence for branching Markov chains“. Electronic Communications in Probability 13 (2008): 576–605. http://dx.doi.org/10.1214/ecp.v13-1424.
Der volle Inhalt der QuelleBaier, Christel, Joost-Pieter Katoen, Holger Hermanns und Verena Wolf. „Comparative branching-time semantics for Markov chains“. Information and Computation 200, Nr. 2 (August 2005): 149–214. http://dx.doi.org/10.1016/j.ic.2005.03.001.
Der volle Inhalt der QuelleSchinazi, Rinaldo. „On multiple phase transitions for branching Markov chains“. Journal of Statistical Physics 71, Nr. 3-4 (Mai 1993): 507–11. http://dx.doi.org/10.1007/bf01058434.
Der volle Inhalt der QuelleAthreya, Krishna B., und Hye-Jeong Kang. „Some limit theorems for positive recurrent branching Markov chains: I“. Advances in Applied Probability 30, Nr. 3 (September 1998): 693–710. http://dx.doi.org/10.1239/aap/1035228124.
Der volle Inhalt der QuelleAthreya, Krishna B., und Hye-Jeong Kang. „Some limit theorems for positive recurrent branching Markov chains: I“. Advances in Applied Probability 30, Nr. 03 (September 1998): 693–710. http://dx.doi.org/10.1017/s0001867800008557.
Der volle Inhalt der QuelleLIU, YUANYUAN, HANJUN ZHANG und YIQIANG ZHAO. „COMPUTABLE STRONGLY ERGODIC RATES OF CONVERGENCE FOR CONTINUOUS-TIME MARKOV CHAINS“. ANZIAM Journal 49, Nr. 4 (April 2008): 463–78. http://dx.doi.org/10.1017/s1446181108000114.
Der volle Inhalt der QuelleBACCI, GIORGIO, GIOVANNI BACCI, KIM G. LARSEN und RADU MARDARE. „Converging from branching to linear metrics on Markov chains“. Mathematical Structures in Computer Science 29, Nr. 1 (25.07.2017): 3–37. http://dx.doi.org/10.1017/s0960129517000160.
Der volle Inhalt der QuelleHuang, Ying, und Arthur F. Veinott. „Markov Branching Decision Chains with Interest-Rate-Dependent Rewards“. Probability in the Engineering and Informational Sciences 9, Nr. 1 (Januar 1995): 99–121. http://dx.doi.org/10.1017/s0269964800003715.
Der volle Inhalt der QuelleHu, Dihe. „Infinitely dimensional control Markov branching chains in random environments“. Science in China Series A 49, Nr. 1 (Januar 2006): 27–53. http://dx.doi.org/10.1007/s11425-005-0024-2.
Der volle Inhalt der QuelleCox, J. T. „On the ergodic theory of critical branching Markov chains“. Stochastic Processes and their Applications 50, Nr. 1 (März 1994): 1–20. http://dx.doi.org/10.1016/0304-4149(94)90144-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Branching Markov chains"
Nordvall, Lagerås Andreas. „Markov Chains, Renewal, Branching and Coalescent Processes : Four Topics in Probability Theory“. Doctoral thesis, Stockholm University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6637.
Der volle Inhalt der QuelleThis thesis consists of four papers.
In paper 1, we prove central limit theorems for Markov chains under (local) contraction conditions. As a corollary we obtain a central limit theorem for Markov chains associated with iterated function systems with contractive maps and place-dependent Dini-continuous probabilities.
In paper 2, properties of inverse subordinators are investigated, in particular similarities with renewal processes. The main tool is a theorem on processes that are both renewal and Cox processes.
In paper 3, distributional properties of supercritical and especially immortal branching processes are derived. The marginal distributions of immortal branching processes are found to be compound geometric.
In paper 4, a description of a dynamic population model is presented, such that samples from the population have genealogies as given by a Lambda-coalescent with mutations. Depending on whether the sample is grouped according to litters or families, the sampling distribution is either regenerative or non-regenerative.
Nordvall, Lagerås Andreas. „Markov chains, renewal, branching and coalescent processes : four topics in probability theory /“. Stockholm : Department of Mathematics, Stockholm university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6637.
Der volle Inhalt der QuelleAdam, Etienne. „Persistance et vitesse d'extinction pour des modèles de populations stochastiques multitypes en temps discret“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX019/document.
Der volle Inhalt der QuelleThis thesis is devoted to the mathematical study of stochastic modelds of structured populations dynamics.In the first chapter, we introduce a discrete time stochastic process taking into account various ecological interactions between individuals, such as competition, migration, mutation, or predation. We first prove a ``law of large numbers'': where we show that if the initial population tends to infinity, then, on any finite interval of time, the stochastic process converges in probability to an underlying deterministic process. We also quantify the discrepancy between these two processes by a kind of ``central limit theorem''. Finally, we give a criterion of persistence/extinction in order to determine the long time behavior of the process. This criterion highlights a critical case which will be studied in more detail in the following chapters.In the second chapter, we give a criterion for the possible unlimited growth in the critical case mentioned above. We apply this criterion to the example of a source-sink metapopulation with two patches of type source, textit{i.e.} the population of each patch goes to extinction if we do not take into account the migration. We prove that there is a possible survival of the metapopulation.In the third chapter, we focus on the behavior of our critical process when it tends to infinity. We prove a convergence in distribution of the scaled process to a gamma distribution, and in a more general framework, by also rescaling time, we obtain a distribution limit of a function of our process to the solution of a stochastic differential equation called a squared Bessel process.In the fourth and last chapter, we study hitting times of some compact sets when our process does not tend to infinity. We give nearly optimal bounds for the tail of these hitting times. If the process goes to extinction almost surely, we deduce from these bounds precise estimates of the tail of the extinction time. Moreover, if the process is a Markov chain, we give a criterion of null recurrence or positive recurrence and in the latter case, we obtain a subgeometric convergence of its transition kernel to its invariant probability measure
Pham, Thi Da Cam. „Théorèmes limite pour un processus de Galton-Watson multi-type en environnement aléatoire indépendant“. Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4005/document.
Der volle Inhalt der QuelleThe theory of multi-type branching process in i.i.d. environment is considerably less developed than for the univariate case, and fundamental questions are up to date unsolved. Answers demand a solid understanding of the behavior of products of i.i.d. matrices with non-negative entries. Under mild assumptions, when the probability generating functions of the reproduction laws are fractional-linear, the survival probability of the multi-type branching process in random environment up to moment n is proportional to 1/√n as n → ∞. Techniques for univariate branching process in random environment and methods from the theory of products of i.i.d. random matrices are required
Weibel, Julien. „Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Der volle Inhalt der QuelleGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices
Razetti, Agustina. „Modélisation et caractérisation de la croissance des axones à partir de données in vivo“. Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4016/document.
Der volle Inhalt der QuelleHow the brain wires up during development remains an open question in the scientific community across disciplines. Fruitful efforts have been made to elucidate the mechanisms of axonal growth, such as pathfinding and guiding molecules. However, recent evidence suggests other actors to be involved in neuron growth in vivo. Notably, axons develop in populations and embedded in mechanically constrained environments. Thus, to fully understand this dynamic process, one must take into account collective mechanisms and mechanical interactions within the axonal populations. However, techniques to directly measure this from living brains are today lacking or heavy to implement. This thesis emerges from a multidisciplinary collaboration, to shed light on axonal development in vivo and how adult complex axonal morphologies are attained. Our work is inspired and validated from images of single wild type and mutated Drosophila y axons, which we have segmented and normalized. We first proposed a mathematical framework for the morphological study and classification of axonal groups. From this analysis we hypothesized that axon growth derives from a stochastic process, and that the variability and complexity of axonal trees result from its intrinsic nature, as well as from elongation strategies developed to overcome the mechanical constraints of the developing brain. We designed a mathematical model of single axon growth based on Gaussian Markov Chains with two parameters, accounting for axon rigidity and attraction to the target field. We estimated the model parameters from data, and simulated the growing axons embedded in spatially constraint populations to test our hypothesis. We dealt with themes from applied mathematics as well as from biology, and unveiled unexplored effects of collective growth on axonal development in vivo
Ye, Yinna. „PROBABILITÉ DE SURVIE D'UN PROCESSUS DE BRANCHEMENT DANS UN ENVIRONNEMENT ALÉATOIRE MARKOVIEN“. Phd thesis, Université François Rabelais - Tours, 2011. http://tel.archives-ouvertes.fr/tel-00605751.
Der volle Inhalt der QuelleOlivier, Adelaïde. „Analyse statistique des modèles de croissance-fragmentation“. Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090047/document.
Der volle Inhalt der QuelleThis work is concerned with growth-fragmentation models, implemented for investigating the growth of a population of cells which divide according to an unknown splitting rate, depending on a structuring variable – age and size being the two paradigmatic examples. The mathematical framework includes statistics of processes, nonparametric estimations and analysis of partial differential equations. The three objectives of this work are the following : get a nonparametric estimate of the division rate (as a function of age or size) for different observation schemes (genealogical or continuous) ; to study the transmission of a biological feature from one cell to an other and study the feature of one typical cell ; to compare different populations of cells through their Malthus parameter, which governs the global growth (when introducing variability in the growth rate among cells for instance)
Buchteile zum Thema "Branching Markov chains"
Krell, Nathalie. „Self-Similar Branching Markov Chains“. In Lecture Notes in Mathematics, 261–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01763-6_10.
Der volle Inhalt der QuelleDynkin, E. B. „Branching Exit Markov System and their Applications to Partial Differential Equations“. In Markov Processes and Controlled Markov Chains, 3–13. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_1.
Der volle Inhalt der QuelleQin, Guangping, und Jinzhao Wu. „Branching Time Equivalences for Interactive Markov Chains“. In Lecture Notes in Computer Science, 156–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30233-9_12.
Der volle Inhalt der QuelleBaier, Christel, Holger Hermanns, Joost-Pieter Katoen und Verena Wolf. „Comparative Branching-Time Semantics for Markov Chains“. In CONCUR 2003 - Concurrency Theory, 492–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45187-7_32.
Der volle Inhalt der QuelleBacci, Giorgio, Giovanni Bacci, Kim G. Larsen und Radu Mardare. „Converging from Branching to Linear Metrics on Markov Chains“. In Theoretical Aspects of Computing - ICTAC 2015, 349–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25150-9_21.
Der volle Inhalt der QuelleArora, Shiraj, und M. V. Panduranga Rao. „Model Checking Branching Time Properties for Incomplete Markov Chains“. In Model Checking Software, 20–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30923-7_2.
Der volle Inhalt der QuelleHahn, Ernst Moritz, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi und Dominik Wojtczak. „Model-Free Reinforcement Learning for Branching Markov Decision Processes“. In Computer Aided Verification, 651–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81688-9_30.
Der volle Inhalt der QuelleGrimmett, Geoffrey R., und David R. Stirzaker. „Markov chains“. In Probability and Random Processes, 213–304. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198572237.003.0006.
Der volle Inhalt der QuelleGrimmett, Geoffrey R., und David R. Stirzaker. „Renewals“. In Probability and Random Processes, 412–39. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198572237.003.0010.
Der volle Inhalt der QuelleGrenander, Ulf, und Michael I. Miller. „Probabilistic Directed Acyclic Graphs and Their Entropies“. In Pattern Theory. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198505709.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Branching Markov chains"
Xia, Ning, Aishuang Li, Guizhi Zhu, Xiaoguo Niu, Chunsheng Hou und Yangying Gan. „Study of Branching Responses of One Year Old Branches of Apple Trees to Heading Using Hidden Semi-Markov Chains“. In 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2009. http://dx.doi.org/10.1109/pma.2009.10.
Der volle Inhalt der QuelleChen, Yan Hua, Qian Zhang, Bao Guo Li und Bao Gui Zhang. „Characterizing Wheat Root Branching Using a Markov Chain Approach“. In 2006 International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2006. http://dx.doi.org/10.1109/pma.2006.31.
Der volle Inhalt der Quelle