Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Brain microstructure imaging“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Brain microstructure imaging" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Brain microstructure imaging"
Nilsson, Markus, Elisabet Englund, Filip Szczepankiewicz, Danielle van Westen und Pia C. Sundgren. „Imaging brain tumour microstructure“. NeuroImage 182 (November 2018): 232–50. http://dx.doi.org/10.1016/j.neuroimage.2018.04.075.
Der volle Inhalt der QuelleAlotaibi, Abdulmajeed, Christopher Tench, Rebecca Stevenson, Ghadah Felmban, Amjad Altokhis, Ali Aldhebaib, Rob A. Dineen und Cris S. Constantinescu. „Investigating Brain Microstructural Alterations in Type 1 and Type 2 Diabetes Using Diffusion Tensor Imaging: A Systematic Review“. Brain Sciences 11, Nr. 2 (22.01.2021): 140. http://dx.doi.org/10.3390/brainsci11020140.
Der volle Inhalt der QuelleReislev, Nina Linde, Tim Bjørn Dyrby, Hartwig Roman Siebner, Ron Kupers und Maurice Ptito. „Simultaneous Assessment of White Matter Changes in Microstructure and Connectedness in the Blind Brain“. Neural Plasticity 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6029241.
Der volle Inhalt der QuelleDinkel, Johannes G., Godehard Lahmer, Angelika Mennecke, Stefan W. Hock, Tanja Richter-Schmidinger, Rainer Fietkau, Luitpold Distel, Florian Putz, Arnd Dörfler und Manuel A. Schmidt. „Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure—A Diffusion Tensor Imaging Analysis“. Brain Sciences 12, Nr. 7 (04.07.2022): 879. http://dx.doi.org/10.3390/brainsci12070879.
Der volle Inhalt der QuelleMiddleton, Dana M., Jonathan Y. Li, Hui J. Lee, Steven Chen, Patricia I. Dickson, N. Matthew Ellinwood, Leonard E. White und James M. Provenzale. „Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences“. Neuroradiology Journal 30, Nr. 4 (20.06.2017): 324–29. http://dx.doi.org/10.1177/1971400917709628.
Der volle Inhalt der QuellePaus, Tomáš. „Imaging microstructure in the living human brain: A viewpoint“. NeuroImage 182 (November 2018): 3–7. http://dx.doi.org/10.1016/j.neuroimage.2017.10.013.
Der volle Inhalt der QuelleAlexander, Daniel C., Tim B. Dyrby, Markus Nilsson und Hui Zhang. „Imaging brain microstructure with diffusion MRI: practicality and applications“. NMR in Biomedicine 32, Nr. 4 (29.11.2017): e3841. http://dx.doi.org/10.1002/nbm.3841.
Der volle Inhalt der QuelleDimitrova, Ralica, Maximilian Pietsch, Daan Christiaens, Judit Ciarrusta, Thomas Wolfers, Dafnis Batalle, Emer Hughes et al. „Heterogeneity in Brain Microstructural Development Following Preterm Birth“. Cerebral Cortex 30, Nr. 9 (18.04.2020): 4800–4810. http://dx.doi.org/10.1093/cercor/bhaa069.
Der volle Inhalt der QuelleHuang, Tzu-Hsin, Ming-Chi Lai, Yu-Shiue Chen und Chin-Wei Huang. „Brain Imaging in Epilepsy-Focus on Diffusion-Weighted Imaging“. Diagnostics 12, Nr. 11 (27.10.2022): 2602. http://dx.doi.org/10.3390/diagnostics12112602.
Der volle Inhalt der QuelleMartinot, J. l. „CS02-03 - Imaging depression“. European Psychiatry 26, S2 (März 2011): 1773. http://dx.doi.org/10.1016/s0924-9338(11)73477-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Brain microstructure imaging"
Panagiotaki, E. „Geometric models of brain white matter for microstructure imaging with diffusion MRI“. Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1310435/.
Der volle Inhalt der QuelleNovello, Lisa. „Towards Improving the Specificity of Human Brain Microstructure Research with Diffusion-Weighted MRI“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/342277.
Der volle Inhalt der QuelleLacerda, Luis Miguel Rosa Sousa Prado De. „Quantitative white matter metrics : diffusion imaging and advanced processing for detailed investigation of brain microstructure“. Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/quantitative-white-matter-metrics(9058c64a-93a0-4db0-9799-c0bba7bd55fe).html.
Der volle Inhalt der QuelleBeaujoin, Justine. „Post mortem inference of the human brain microstructure using ultra-high field magnetic resonance imaging with strong gradients“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS448/document.
Der volle Inhalt der QuelleThe aim of ultra-high field strength (≥7T) and ultra-strong gradient systems (≥300mT/m) is to go beyond the millimeter resolution imposed at lower field and to reach the mesoscopic scale in neuroimaging. This scale is essential to understand the link between brain structure and function. However, despite recent technological improvements of clinical UHF-MRI, gradient systems remain too limited to reach this resolution. This thesis aims at answering the need for mapping the human brain at a mesoscopic scale by the study of post mortem samples. An alternative approach has been developed, based on the use of preclinical systems equipped with ultra-high fields (7T/11.7T) and strong gradients (780mT). After its extraction and fixation at Bretonneau University Hospital (Tours), an entire human brain specimen was scanned on a 3T clinical system, before separating its two hemispheres and cutting each hemisphere into seven blocks that could fit into the small bore of an 11.7T preclinical system. An MRI acquisition protocol targeting a mesoscopic resolution was then set up at 11.7T. This protocol, including anatomical, quantitative, and diffusion-weighted sequences, was validated through the study of two key structures: the hippocampus and the brainstem. From the high resolution anatomical and diffusion dataset of the human hippocampus, it was possible to segment the hippocampal subfields, to extract the polysynaptic pathway, and to observe a positive gradient of connectivity and neuritic density in the posterior-anterior direction of the hippocampal formation. The use of advanced microstructural models (NODDI) also highlighted the potential of these techniques to reveal the laminar structure of the Ammon’s horn. A high resolution anatomical and diffusion MRI dataset was obtained from the human brainstem with an enhanced resolution of a hundred micrometers. The segmentation of 53 of its 71 nuclei was performed at the Bretonneau University Hospital, making it the most complete MR-based segmentation of the human brainstem to date. Major white matter bundles were reconstructed, as well as projections of the locus coeruleus, a structure known to be impaired in Parkinson’s disease. Buoyed by these results, a dedicated acquisition campaign targeting the entire left hemisphere was launched for total scan duration of 10 months. The acquisition protocol was performed at 11.7T and included high resolution anatomical sequences (100/150μm) as well as 3D diffusion-weighted sequences (b=1500/4500/8000 s/mm², 25/60/90 directions, 200μm). In addition, T1-weighted inversion recovery turbo spin echo scans were performed at 7T to further investigate the myeloarchitecture of the cortical ribbon at 300µm, revealing its laminar structure. A new method to automatically segment the cortical layers was developed relying on a Gaussian mixture model integrating both T1-based myeloarchitectural information and diffusion-based cytoarchitectural information. The results gave evidence that the combination of these two contrasts highlighted the layers of the visual cortex, the myeloarchitectural information favoring the extraction of the outer layers and the neuritic density favoring the extraction of the deeper layers. Finally, the analysis of the MRI dataset acquired at 11.7T on the seven blocks required the development of a preprocessing pipeline to correct artifacts and to reconstruct the entire hemisphere using advanced registration methods. The aim was to obtain an ultra-high spatio-angular resolution MRI dataset of the left hemisphere, in order to establish a new mesoscopic post mortem MRI atlas of the human brain, including key information about its structure, connectivity and microstructure
Neto, Henriques Rafael. „Advanced methods for diffusion MRI data analysis and their application to the healthy ageing brain“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/281993.
Der volle Inhalt der QuelleFang, Chengran. „Neuron modeling, Bloch-Torrey equation, and their application to brain microstructure estimation using diffusion MRI“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG010.
Der volle Inhalt der QuelleNon-invasively estimating brain microstructure that consists of a very large number of neurites, somas, and glial cells is essential for future neuroimaging. Diffusion MRI (dMRI) is a promising technique to probe brain microstructural properties below the spatial resolution of MRI scanners. Due to the structural complexity of brain tissue and the intricate diffusion MRI mechanism, in vivo microstructure estimation is challenging.Existing methods typically use simplified geometries, particularly spheres, and sticks, to model neuronal structures and to obtain analytical expressions of intracellular signals. The validity of the assumptions made by these methods remains undetermined. This thesis aims to facilitate simulationdriven brain microstructure estimation by replacing simplified geometries with realistic neuron geometry models and the analytical intracellular signal expressions with diffusion MRI simulations. Combined with accurate neuron geometry models, numerical dMRI simulations can give accurate intracellular signals and seamlessly incorporate effects arising from, for instance, neurite undulation or water exchange between soma and neurites.Despite these advantages, dMRI simulations have not been widely adopted due to the difficulties in constructing realistic numerical phantoms, the high computational cost of dMRI simulations, and the difficulty in approximating the implicit mappings between dMRI signals and microstructure properties. This thesis addresses the above problems by making four contributions. First, we develop a high-performance opensource neuron mesh generator and make publicly available over a thousand realistic cellular meshes.The neuron mesh generator, swc2mesh, can automatically and robustly convert valuable neuron tracing data into realistic neuron meshes. We have carefully designed the generator to maintain a good balance between mesh quality and size. A neuron mesh database, NeuronSet, which contains 1213 simulation-ready cell meshes and their neuroanatomical measurements, was built using the mesh generator. These meshes served as the basis for further research. Second, we increased the computational efficiency of the numerical matrix formalism method by accelerating the eigendecomposition algorithm and exploiting GPU computing. The speed was increased tenfold. With similar accuracy, the optimized numerical matrix formalism is 20 times faster than the FEM method and 65 times faster than a GPU-based Monte Carlo method. By performing simulations on realistic neuron meshes, we investigated the effect of water exchange between somas and neurites, and the relationship between soma size and signals. We then implemented a new simulation method that provides a Fourier-like representation of the dMRI signals. This method was derived theoretically and implemented numerically. We validated the convergence of the method and showed that the error behavior is consistent with our error analysis. Finally, we propose a simulation-driven supervised learning framework to estimate brain microstructure using diffusion MRI. By exploiting the powerful modeling and computational capabilities that are mentioned above, we have built a synthetic database containing the dMRI signals and microstructure parameters of 1.4 million artificial brain voxels. We have shown that this database can help approximate the underlying mappings of the dMRI signals to volume and surface fractions using artificial neural networks
Bihan-Poudec, Yann. „IRM de diffusion cérébrale à haute résolution : développements des méthodes de reconstruction et de post-traitement“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1299.
Der volle Inhalt der QuelleDiffusion imaging (dMRI) is a unique method for studying brain microstructure and brain connectivity in a non-invasive way. However, the low resolution and quality of this imaging restricts its use in some applications. The aim of this thesis is to develop very high resolution cerebral MRI on an anesthetized macaque model on a 3T scanner using a segmented 3D echo-planar 3D imaging sequence (3D-msEPI). After a stage of development of the reconstruction and post-processing of the data, we made diffusion images on the macaque brain at an isotropic spatial resolution of 0.5mm. This resolution allowed us to delineate and characterize fine structures such as hippocampal sublayers or superficial white matter, which are undetectable with classical sequences. However, this method is vulnerable to the elastic movements of the brain tissue induced by the cardiovascular pulsations. A strategy of synchronization of the acquisition on this one allowed us to characterize their effects on the very high resolution MRI in the anesthetized monkey. These effects are characterized by ghosting artifacts and signal losses that corrupt images, tensor, and tractography in specific areas of the brain. The synchronization allowed us to realize macaque brain diffusion imaging at spatial resolutions and very high diffusion weights never reached before. These preliminary results demonstrate the potential of our method for neuroscientific and medical applications in humans
Horne, Nikki Renee. „Microstructural white matter changes in Alzheimer's disease a diffusion tensor imaging study /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3296903.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed April 7, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 127-149).
Gongvatana, Assawin. „Microstructural white matter integrity in HIV-infected individuals in the HAART era a diffusion tensor imaging study /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3316192.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed September 4, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 81-94).
Chappell, Michael Hastings. „Developments in the use of diffusion tensor imaging data to investigate brain structure and connectivity“. Thesis, University of Canterbury. Physics and Astronomy, 2007. http://hdl.handle.net/10092/1476.
Der volle Inhalt der QuelleBücher zum Thema "Brain microstructure imaging"
Microstructural Parcellation Of The Human Cerebral Cortex. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Den vollen Inhalt der Quelle findenRobert, Turner, und Stefan Geyer. Microstructural Parcellation of the Human Cerebral Cortex: From Brodmann's Post-Mortem Map to in Vivo Mapping with High-Field Magnetic Resonance Imaging. Springer, 2015.
Den vollen Inhalt der Quelle findenRobert, Turner, und Stefan Geyer. Microstructural Parcellation of the Human Cerebral Cortex: From Brodmann's Post-Mortem Map to in Vivo Mapping with High-Field Magnetic Resonance Imaging. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenPassaro, Antony, Foteini Christidi, Vasiliki Tsirka und Andrew C. Papanicolaou. White Matter Connectivity. Herausgegeben von Andrew C. Papanicolaou. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199764228.013.5.
Der volle Inhalt der QuelleBuchteile zum Thema "Brain microstructure imaging"
Jallais, Maëliss, und Demian Wassermann. „Single Encoding Diffusion MRI: A Probe to Brain Anisotropy“. In Mathematics and Visualization, 171–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_8.
Der volle Inhalt der QuelleRoebroeck, Alard. „dMRI: Diffusion Magnetic Resonance Imaging as a Window onto Structural Brain Networks and White Matter Microstructure“. In Brain Network Dysfunction in Neuropsychiatric Illness, 105–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59797-9_6.
Der volle Inhalt der QuelleTax, Chantal M. W., Elena Kleban, Muhamed Baraković, Maxime Chamberland und Derek K. Jones. „Magnetic Resonance Imaging of $$T_2$$- and Diffusion Anisotropy Using a Tiltable Receive Coil“. In Mathematics and Visualization, 247–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_12.
Der volle Inhalt der QuelleZhang, Gengbiao, Yingju Lu, Hongyi Zheng, Lingmei Kong und Wenbin Zheng. „Protective Effects of Resveratrol on Brain Edema and Microstructural Changes in Human Brain After Acute Alcohol Intake: Assessment by Diffusion Weighted Kurtosis Imaging“. In Biomedical and Computational Biology, 169–79. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25191-7_13.
Der volle Inhalt der QuelleNedjati-Gilani, G., und D. C. Alexander. „Tissue Microstructure Imaging with Diffusion MRI“. In Brain Mapping, 277–85. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-397025-1.00296-7.
Der volle Inhalt der QuelleMatuschke, Felix, Kévin Ginsburger, Cyril Poupon, Katrin Amunts und Markus Axer. „Dense Fiber Modeling for 3D-Polarized Light Imaging Simulations“. In Future Trends of HPC in a Disruptive Scenario. IOS Press, 2019. http://dx.doi.org/10.3233/apc190017.
Der volle Inhalt der QuelleTripoliti, Evanthia E., Dimitrios I. Fotiadis und Konstantia Veliou. „Diffusion Tensor Imaging and Fiber Tractography“. In Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, 229–46. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-314-2.ch015.
Der volle Inhalt der QuelleAgartz, Ingrid, und Lynn Mørch-Johnsen. „Neural Basis of Apathy“. In Apathy, 174–90. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198841807.003.0010.
Der volle Inhalt der QuelleKarampinos, Dimitrios C., Robert Dawe, Konstantinos Arfanakis und John G. Georgiadis. „Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI“. In Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, 90–107. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-314-2.ch007.
Der volle Inhalt der QuelleChung, Sohae, Els Fieremans, Joseph F. Rath und Yvonne W. Lui. „Multi-shell diffusion MR imaging and brain microstructure after mild traumatic brain injury: A focus on working memory“. In Cellular, Molecular, Physiological, and Behavioral Aspects of Traumatic Brain Injury, 393–403. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823036-7.00026-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Brain microstructure imaging"
Brusini, Lorenza, Federica Cruciani, Ilaria Boscolo Galazzo, Marco Pitteri, Silvia F. Storti, Massimiliano Calabrese, Marco Lorenzi und Gloria Menegaz. „Multivariate Data Analysis Suggests The Link Between Brain Microstructure And Cognitive Impairment In Multiple Sclerosis“. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9433799.
Der volle Inhalt der QuelleZucchelli, Mauro, Samuel Deslauriers-Gauthier und Rachid Deriche. „Investigating The Effect Of Dmri Signal Representation On Fully-Connected Neural Networks Brain Tissue Microstructure Estimation“. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434046.
Der volle Inhalt der QuelleRolland, C., J. Lebenberg, F. Leroy, E. Moulton, P. Adibpour, D. Riviere, C. Poupon et al. „Exploring Microstructure Asymmetries in the Infant Brain Cortex: A Methodological Framework Combining Structural and Diffusion Mri“. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). IEEE, 2019. http://dx.doi.org/10.1109/isbi.2019.8759421.
Der volle Inhalt der QuelleChiang, Ming-Chang, Marina Barysheva, Katie L. McMahon, Greig I. de Zubicaray, Kori Johnson, Nicholas G. Martin, Arthur W. Toga, Margaret J. Wright und Paul M. Thompson. „Hierarchical clustering of the genetic connectivity matrix reveals the network topology of gene action on brain microstructure: An N=531 twin study“. In 2011 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011). IEEE, 2011. http://dx.doi.org/10.1109/isbi.2011.5872533.
Der volle Inhalt der QuelleWright, Rika M., und K. T. Ramesh. „A Finite Element Model for Estimating Axonal Damage in Traumatic Brain Injury“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80193.
Der volle Inhalt der QuelleLefebvre, Joël, Alexia Pragassam, Julien Reynaud, Frans Irgolitsch und Frédéric Lesage. „Multiorientation mapping of white matter fiber microstructures in whole mouse brains using serial optical coherence tomography“. In Neural Imaging and Sensing 2024, herausgegeben von Qingming Luo, Jun Ding und Ling Fu. SPIE, 2024. http://dx.doi.org/10.1117/12.3002959.
Der volle Inhalt der QuelleZhuang, Jiayan, Gengbiao Zhang, Jin Wang, Yuan Xu, Qilu Gao und Wenbin Zheng. „Diffusion Kurtosis Imaging Detects Microstructural Changes in the Rat Brain with Sensorineural Hearing Loss“. In 2023 16th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2023. http://dx.doi.org/10.1109/cisp-bmei60920.2023.10373279.
Der volle Inhalt der QuelleLebenberg, J., C. Poupon, B. Thirion, F. Leroy, J. F. Mangin, G. Dehaene-Lambertz und J. Dubois. „Clustering the infant brain tissues based on microstructural properties and maturation assessment using multi-parametric MRI“. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7163837.
Der volle Inhalt der QuelleWu, Jin, Tohoru Takeda, Thet Thet Lwin, Tetsuya Yuasa, Manabu Minami und Takao Akatsuka. „Biomedical application of high sensitive synchrotron X-ray imaging techniques to assess the microstructures and function of hamster heart“. In 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging. IEEE, 2007. http://dx.doi.org/10.1109/nfsi-icfbi.2007.4387686.
Der volle Inhalt der Quelle