Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Boussinesq-Type“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Boussinesq-Type" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Boussinesq-Type"
Yuldashev, Tursun. „Mixed Boussinesq-Type Differential Equation“. Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 1. Mathematica. Physica, Nr. 2 (Juni 2016): 13–26. http://dx.doi.org/10.15688/jvolsu1.2016.2.2.
Der volle Inhalt der QuelleMcCann, Maile, Patrick Lynett und Behzad Ebrahimi. „FREQUENCY DISPERSION IN DEPTH-INTEGRATED MODELS THROUGH MACHINE LEARNING SURROGATES“. Coastal Engineering Proceedings, Nr. 37 (01.09.2023): 54. http://dx.doi.org/10.9753/icce.v37.waves.54.
Der volle Inhalt der QuelleDe BRYE, Sébastien, Rodolfo Silva und Edgar Mendoza. „BOUSSINESQ TYPE MODELLING OF STORM SURGES“. Coastal Engineering Proceedings 1, Nr. 33 (11.10.2012): 15. http://dx.doi.org/10.9753/icce.v33.posters.15.
Der volle Inhalt der QuelleEngelbrecht, Jüri, Tanel Peets und Kert Tamm. „Solitons modelled by Boussinesq-type equations“. Mechanics Research Communications 93 (Oktober 2018): 62–65. http://dx.doi.org/10.1016/j.mechrescom.2017.05.008.
Der volle Inhalt der QuelleMeletlidou, Efi, Joël Pouget, Gérard Maugin und Elias Aifantis. „Invariant relations in Boussinesq-type equations“. Chaos, Solitons & Fractals 22, Nr. 3 (November 2004): 613–25. http://dx.doi.org/10.1016/j.chaos.2004.02.007.
Der volle Inhalt der QuelleSchäffer, Hemming A., und Per A. Madsen. „Further enhancements of Boussinesq-type equations“. Coastal Engineering 26, Nr. 1-2 (September 1995): 1–14. http://dx.doi.org/10.1016/0378-3839(95)00017-2.
Der volle Inhalt der QuelleMurawski, K. „Instabilities of generalized Boussinesq-type waves“. Wave Motion 10, Nr. 2 (April 1988): 161–69. http://dx.doi.org/10.1016/0165-2125(88)90041-8.
Der volle Inhalt der QuelleLuo, Dejun. „Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system“. Nonlinearity 34, Nr. 12 (05.11.2021): 8311–30. http://dx.doi.org/10.1088/1361-6544/ac3145.
Der volle Inhalt der QuelleSong, Changming, Jina Li und Ran Gao. „Nonexistence of Global Solutions to the Initial Boundary Value Problem for the Singularly Perturbed Sixth-Order Boussinesq-Type Equation“. Journal of Applied Mathematics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/928148.
Der volle Inhalt der QuelleTaskesen, Hatice, Necat Polat und Abdulkadir Ertaş. „On Global Solutions for the Cauchy Problem of a Boussinesq-Type Equation“. Abstract and Applied Analysis 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/535031.
Der volle Inhalt der QuelleDissertationen zum Thema "Boussinesq-Type"
Yao, Yao. „Boussinesq-type modelling of gently shoaling extreme ocean waves“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443009.
Der volle Inhalt der QuelleLi, Shenghao. „Non-homogeneous Boundary Value Problems for Boussinesq-type Equations“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1468512590.
Der volle Inhalt der QuelleLin, Qun. „The well-posedness and solutions of Boussinesq-type equations“. Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/2247.
Der volle Inhalt der QuelleLin, Qun. „The well-posedness and solutions of Boussinesq-type equations“. Curtin University of Technology, Department of Mathematics and Statistics, 2009. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=129030.
Der volle Inhalt der QuelleSecondly, a generalized Jacobi/exponential expansion method for finding exact solutions of non-linear partial differential equations is discussed. We use the proposed expansion method to construct many new, previously undiscovered exact solutions for the Boussinesq and modified Korteweg-de Vries equations. We also apply it to the shallow water long wave approximate equations. New solutions are deduced for this system of partial differential equations.
Finally, we develop and validate a numerical procedure for solving a class of initial boundary value problems for the improved Boussinesq equation. The finite element method with linear B-spline basis functions is used to discretize the equation in space and derive a second order system involving only ordinary derivatives. It is shown that the coefficient matrix for the second order term in this system is invertible. Consequently, for the first time, the initial boundary value problem can be reduced to an explicit initial value problem, which can be solved using many accurate numerical methods. Various examples are presented to validate this technique and demonstrate its capacity to simulate wave splitting, wave interaction and blow-up behavior.
Weston, Benjamin. „A Godunov-type Boussinesq model of extreme wave runup and overtopping“. Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403773.
Der volle Inhalt der QuelleTatlock, Benjamin. „A hybrid finite-volume finite-difference rotational Boussinesq-type model of surf-zone hydrodynamics“. Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30443/.
Der volle Inhalt der QuelleGalaz, mora José. „Coupling methodes of phase-resolving coastal wave models“. Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. https://ged.scdi-montpellier.fr/florabium45/jsp/nnt.jsp?nnt=2024UMONS026.
Der volle Inhalt der QuelleThis thesis investigates the coupling of coastal phase-resolving water wave models, commonly employed in the study of nearshore wave propagation. Despite numerous models and the existing coupling examples, there has been a significant lack of consensus concerning the artifacts and issues induced by these strategies, as well as a vague understanding of how to analyze and compare them. To tackle this problem, this research adopts a domain decomposition approach, anchored in the principle that 3D water wave models (e.g., Euler or Navier-Stokes) serve as the ideal reference solution.Structured in two parts, the thesis first proposes new models and evaluates them through numerical experiments, identifying specific hypotheses about their accuracy and limitations. Subsequently, a theoretical framework is developed to prove these hypotheses mathematically, utilizing the one-way coupled model as an intermediate reference to distinguish between expected and unexpected effects and categorize errors relative to the 3D solution.The total error is split in three parts—coupling error, Cauchy-model error, and half-line-model error—and these concepts are applied to the linear coupling of Saint-Venant and Boussinesq models using the so called 'hybrid' model. The analysis confirms that the coupling error accounts for wave reflections at the interfaces, and varies with the direction of propagation. Moreover, thanks to the choice of the one-way model as the intermediate reference solution, this analysis proves several important properties such as the well-posedness and the asymptotic size of the reflections. Additionally, the thesis also addresses the weak-wellposedness of the Cauchy problem for the B model and its implications for mesh-dependent solutions that have been reported. As a byproduct, a new result for the half-line problem of the linear B model is obtained for a more general class of boundary data, including a description of the dispersive boundary layer, which had not been addressed in the literature yet.The proposed pragmatic definition of coupling error aligns with and extends existing notions from the literature. It can be readily applied to other BT models, discrete equations, linear and nonlinear cases (at least numerically), as well as other coupling techniques, all of which are discussed in the perspective work
Atlas, Abdelghafour. „Analyse mathématique et numérique du comportement de solutions d'équations d'ondes hydrodynamiques : modèles de type Boussinesq et KdV“. Amiens, 2006. http://www.theses.fr/2006AMIEA609.
Der volle Inhalt der QuelleSouza, Diego Araújo de. „Controlabilidade para alguns modelos da mecânica dos fluidos“. Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/8046.
Der volle Inhalt der QuelleMade available in DSpace on 2016-03-28T14:37:42Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) Previous issue date: 2014-03-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The aim of this thesis is to present some controllability results for some fluid mechanic models. More precisely, we will prove the existence of controls that steer the solution of our system from a prescribed initial state to a desired final state at a given positive time. The two first Chapters deal with the controllability of the Burgers-α and Leray-α models. The Leray-α model is a regularized variant of the Navier-Stokes system (α is a small positive parameter), that can also be viewed as a model for turbulent flows; the Burgers-α model can be viewed as a related toy model of Leray-α. We prove that the Leray-α and Burgers-α models are locally null controllable, with controls uniformly bounded in α. We also prove that, if the initial data are sufficiently small, the pair state-control (that steers the solution to zero) for the Leray-α system (resp. the Burgers-α system) converges as α → 0+ to a pair state-control(that steers the solution to zero) for the Navier-Stokes equations (resp. the Burgers equation). The third Chapter is devoted to the boundary controllability of inviscid incompressible fluids for which thermal effects are important. They will be modeled through the so called Boussinesq approximation. In the zero heat diffusion case, by adapting and extending some ideas from J.-M. Coron [14] and O. Glass [45], we establish the simultaneous global exact controllability of the velocity field and the temperature for 2D and 3D flows. When the heat diffusion coefficient is positive, we present some additional results concerning exact controllability for the velocity field and local null controllability of the temperature. In the last Chapter, we prove the local exact controllability to the trajectories for a coupled system of the Boussinesq kind, with a reduced number of controls. In the state system, the unknowns are: the velocity field and pressure of the fluid (y, p), the temperature θ and an additional variable c that can be viewed as the concentration of a contaminant solute. We prove several results, that essentially show that it is sufficient to act locally in space on the equations satisfied by θ and c.
O objetivo desta tese é apresentar alguns resultados controlabilidade para alguns modelos da mecânica dos fluidos. Mais precisamente, provaremos a existência de controles que conduzem a solução do nosso sistema de um estado inicial prescrito à um estado final desejado em um tempo positivo dado. Os dois primeiros Capítulos preocupam-se com a controlabilidade dos modelos de Burgers-α e Leray-α. O modelo de Leray-α é uma variante regularizada do sistema de Navier-Stokes (α é umparâmetro positivo pequeno), que pode também ser visto como um modelo de fluxos turbulentos; já o modelo Burgers-α pode ser visto como um modelo simplificado de Leray-α. Provamos que os modelos de Leray-α e Burgers-α são localmente controláveis a zero, com controles limitados uniformemente em α. Também provamos que, se os dados iniciais são suficientemente pequenos, o par estado-controle (que conduz a solução a zero) para o sistema de Leray-α (resp. para o sistema de Burgers-α) converge quando α → 0+ a um par estado-controle (que conduz a solução a zero) para as equações de Navier-Stokes (resp. para a equação de Burgers). O terceiro Capítulo é dedicado à controlabilidade de fluidos incompressíveis invíscidos nos quais os efeitos térmicos são importantes. Estes fluidos são modelados através da então chamada Aproximação de Boussinesq. No caso emque não há difusão de calor, adaptando e estendendo algumas idéias de J.-M. Coron [14] e O. Glass [45], estabelecemos a controlabilidade exata global simultaneamente do campo velocidade e da temperatura para fluxos em 2D e 3D. Quando o coeficiente de difusão do calor é positivo, apresentamos alguns resultados sobre a controlabilidade exata global para o campo velocidade e controlabilidade nula local para a temperatura. No último Capítulo, provamos a controlabilidade exata local à trajetórias de um sistema acoplado do tipo Boussinesq, com um número reduzido de controles. Nesse sistema, as incógnitas são: o campo velocidade e a pressão do fluido (y, p), a temperatura θ e uma variável adicional c que pode ser vista como a concentração de um soluto contaminante. Provamos vários resultados, que essencialmente mostram que é suficiente atuar localmente no espaço sobre as equações satisfeitas por θ e c.
Varing, Audrey. „Wave characterization for coastal and nearshore marine renewable energy applications : focus on wave breaking and spatial varaibility of the wave field“. Thesis, Brest, 2019. http://www.theses.fr/2019BRES0105.
Der volle Inhalt der QuelleSince Marine Renewable Energy (MRE) systems are submitted to wind generated waves. Accurate wave characterization is required in the coastal and nearshore environment where the waves are strongly modified by their interaction with the sea bottom, inducing refraction and wave breaking among other processes.A comprehensive study regarding the wave breaking initiation process is developed. The conventional kinematic criterion uc/c (ratio between the horizontal orbital velocity at the crest and the phase velocity) validity is numerically investigated. Our study leads us to a new kinematic wave breaking criterion based on the ratio between the maximum fluid velocity ||um|| near the wave crest and c. This new criterion improves the detection of the breaking initiation, since ||um|| accurately captures the location of the fluid instability leading to breaking.The wave field spatial variability in coastal areas is mostly studied with spectral wave models. We explore the ability of a phase-resolving model (Boussinesq-type, BT) to provide additional wave information for MRE applications.Spectral and BT models lead to significantly different spatial wave height and power patterns in the presence of strong bottom-induced refraction. We define an innovative methodology to extract wave information from satellite Synthetic Aperture Radar (SAR) images for comparison with models’ outputs. Our results highlight encouraging similarities between the BT model and SAR data
Buchteile zum Thema "Boussinesq-Type"
Hietarinta, Jarmo, und Da-jun Zhang. „Discrete Boussinesq-type equations“. In Nonlinear Systems and Their Remarkable Mathematical Structures, 54–101. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003087670-3.
Der volle Inhalt der QuelleClarkson, Peter A. „New Similarity Reductions of Boussinesq-Type Equations“. In Partially Intergrable Evolution Equations in Physics, 575–76. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0591-7_24.
Der volle Inhalt der QuellePrüser, H. H., und W. Zielke. „Simulation of Wave-spectra with Boussinesq-type Wave Equations“. In Nonlinear Water Waves, 349–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_38.
Der volle Inhalt der QuelleEskilsson, Claes, und Allan P. Engsig-Karup. „On Devising Boussinesq-Type Equations with Bounded Eigenspectra: Two Horizontal Dimensions“. In Mathematics in Industry, 553–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_77.
Der volle Inhalt der QuelleDawson, Clint, und Ali Samii. „A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling“. In Mathematics of Planet Earth, 45–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09559-7_3.
Der volle Inhalt der QuelleMogorosi, Tshepo Edward, Ben Muatjetjeja und Chaudry Masood Khalique. „Conservation Laws for a Generalized Coupled Boussinesq System of KdV–KdV Type“. In Springer Proceedings in Mathematics & Statistics, 315–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12307-3_45.
Der volle Inhalt der QuelleDelis, A. I., und M. Kazolea. „Advanced Numerical Simulation of Near-Shore Processes by Extended Boussinesq-Type Models on Unstructured Meshes“. In Mathematics in Industry, 543–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_76.
Der volle Inhalt der QuelleSaha Ray, Santanu. „New Exact Traveling Wave Solutions of the Coupled Schrödinger–Boussinesq Equations and Tzitzéica-Type Evolution Equations“. In Nonlinear Differential Equations in Physics, 199–229. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1656-6_6.
Der volle Inhalt der Quelle„Boussinesq-type models for uneven bottoms“. In Advanced Series on Ocean Engineering, 473–688. World Scientific Publishing Company, 1997. http://dx.doi.org/10.1142/9789812796042_0005.
Der volle Inhalt der QuelleBorthwick, Alistair, Alison Hunt, Paul Taylor und Benjamin Weston. „Godunov-type Boussinesq modeling of extreme wave run-up“. In Shallow Flows, 615–22. Taylor & Francis, 2004. http://dx.doi.org/10.1201/9780203027325.ch77.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Boussinesq-Type"
Kennedy, Andrew B., James T. Kirby und Mauricio F. Gobbi. „Improved Performance in Boussinesq-Type Equations“. In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)53.
Der volle Inhalt der QuelleGobbi, Maurício F., und James T. Kirby. „A Fourth Order Boussinesq-Type Wave Model“. In 25th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1997. http://dx.doi.org/10.1061/9780784402429.087.
Der volle Inhalt der QuelleSánchez-Bernabe, Francisco J. „Boussinesq type equations and some analytical solutions“. In 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162818.
Der volle Inhalt der QuelleDiaconescu, Emanuel, und Marilena Glovnea. „A Boussinesq Type Problem for the Elastic Layer“. In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71265.
Der volle Inhalt der QuelleKIM, GUNWOO, und CHANGHOON LEE. „NWOGU-TYPE BOUSSINESQ EQUATIONS FOR RAPIDLY VARYING TOPOGRAPHY“. In Proceedings of the 5th International Conference on APAC 2009. World Scientific Publishing Company, 2009. http://dx.doi.org/10.1142/9789814287951_0118.
Der volle Inhalt der QuelleSørensen, Ole R., Per A. Madsen und Hemming A. Schäffer. „Nearshore Wave Dynamics Simulated by Boussinesq Type Models“. In 26th International Conference on Coastal Engineering. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/9780784404119.019.
Der volle Inhalt der QuelleSo/rensen, Ole René, und Lars Steen So/rensen. „Boussinesq Type Modelling Using Unstructured Finite Element Technique“. In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)15.
Der volle Inhalt der QuelleSchaper, H., und W. Zielke. „A Numerical Solution of Boussinesq Type Wave Equations“. In 19th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1985. http://dx.doi.org/10.1061/9780872624382.073.
Der volle Inhalt der QuellePopivanov, Petar. „Travelling Waves for Some Generalized Boussinesq Type Equations“. In INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3567131.
Der volle Inhalt der QuelleLYNETT, P., P. L. F. LIU und H. H. HWUNG. „A MULTI-LAYER APPROACH TO BOUSSINESQ-TYPE MODELING“. In Proceedings of the 29th International Conference. World Scientific Publishing Company, 2005. http://dx.doi.org/10.1142/9789812701916_0005.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Boussinesq-Type"
Gobbi, Mauricio F., und James T. Kirby. A New Boussinesq-Type Model for Surface Water Wave Propagation. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada344641.
Der volle Inhalt der QuelleMalej, Matt, Fengyan Shi, Nigel Tozer, Jane Smith, Emma Lofthouse, Giovanni Cuomo, Gabriela Salgado-Dominguez, Michael-Angelo Lam und Marissa Torres. FUNWAVE-TVD testbed : analytical, laboratory, and field cases for validation and verification of the phase-resolving nearshore Boussinesq-type numerical wave model. Engineer Research and Development Center (U.S.), August 2024. http://dx.doi.org/10.21079/11681/49183.
Der volle Inhalt der QuelleErvin, Kelly, Karl Smink, Bryan Vu und Jonathan Boone. Ship Simulator of the Future in virtual reality. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45502.
Der volle Inhalt der QuelleMalej, Matt, und Fengyan Shi. Suppressing the pressure-source instability in modeling deep-draft vessels with low under-keel clearance in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40639.
Der volle Inhalt der QuelleTorres, Marissa, Michael-Angelo Lam und Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), Oktober 2022. http://dx.doi.org/10.21079/11681/45641.
Der volle Inhalt der Quelle