Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Boundary layer.

Zeitschriftenartikel zum Thema „Boundary layer“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Boundary layer" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bösenberg, Jens, und Holger Linné. „Laser remote sensing of the planetary boundary layer“. Meteorologische Zeitschrift 11, Nr. 4 (30.10.2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chlond, Andreas, und Hartmut Grassl. „The atmospheric boundary layer“. Meteorologische Zeitschrift 11, Nr. 4 (30.10.2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Holloway, Simon, Hugo Ricketts und Geraint Vaughan. „Boundary layer temperature measurements of a noctual urban boundary layer“. EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Der volle Inhalt der Quelle
Annotation:
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mamtaz, Farhana, Ahammad Hossain und Nusrat Sharmin. „Solution of Boundary Layer and Thermal Boundary Layer Equation“. Asian Research Journal of Mathematics 11, Nr. 4 (19.12.2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kenyon, Kern E. „Curvature Boundary Layer“. Physics Essays 16, Nr. 1 (März 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vranková, Andrea, und Milan Palko. „Atmospheric Boundary Layer“. Applied Mechanics and Materials 820 (Januar 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Der volle Inhalt der Quelle
Annotation:
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Müller, Bernhard M. „Boundary‐layer microphone“. Journal of the Acoustical Society of America 96, Nr. 5 (November 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Piau, J. M. „Viscoplastic boundary layer“. Journal of Non-Newtonian Fluid Mechanics 102, Nr. 2 (Februar 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fernholz, H. H. „Boundary Layer Theory“. European Journal of Mechanics - B/Fluids 20, Nr. 1 (Januar 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cha, S. S., R. K. Ahluwalia und K. H. Im. „Boundary layer nucleation“. International Journal of Heat and Mass Transfer 32, Nr. 5 (Mai 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Bahl, Ravi. „Boundary-layer blowing“. AIAA Journal 23, Nr. 1 (Januar 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Koizumi, David H. „Boundary layer microphone“. Journal of the Acoustical Society of America 113, Nr. 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Schmidt, Axel, und Michael Nickel. „Boundary layer adapter“. Journal of the Acoustical Society of America 128, Nr. 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Garratt, J. R. „Boundary layer climates“. Earth-Science Reviews 27, Nr. 3 (Mai 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Holtslag, Bert. „Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers“. Boundary-Layer Meteorology 118, Nr. 2 (Februar 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab und D. P. Telionis. „The Interaction of Rolling Vortices With a Turbulent Boundary Layer“. Journal of Fluids Engineering 117, Nr. 4 (01.12.1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Der volle Inhalt der Quelle
Annotation:
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Taylor, Peter A. „Marine Stratus—A Boundary-Layer Model“. Atmosphere 15, Nr. 5 (11.05.2024): 585. http://dx.doi.org/10.3390/atmos15050585.

Der volle Inhalt der Quelle
Annotation:
A relatively simple 1D RANS model of the time evolution of the planetary boundary layer is extended to include water vapor and cloud droplets plus transfers between them. Radiative fluxes and flux divergence are also included. An underlying ocean surface is treated as a source of water vapor and as a sink for cloud or fog droplets. With a constant sea surface temperature and a steady wind, initially dry or relatively dry air will moisten, starting at the surface. Turbulent boundary layer mixing will then lead towards a layer with a well-mixed potential temperature (and so temperature decreasing with height) and well-mixed water vapor mixing ratio. As a result, the air will, sooner or later, become saturated at some level, and a stratus cloud will form.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Fabian, Peter, Bernhard Rappenglück, Andreas Stohl, Herbert Werner, Martin Winterhalter, Hans Schlager, Paul Stock et al. „Boundary layer photochemistry during a total solar eclipse“. Meteorologische Zeitschrift 10, Nr. 3 (01.05.2001): 187–92. http://dx.doi.org/10.1127/0941-2948/2001/0010-0187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Carpenter, D. L., und J. Lemaire. „The Plasmasphere Boundary Layer“. Annales Geophysicae 22, Nr. 12 (22.12.2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Der volle Inhalt der Quelle
Annotation:
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Iamandi, Constantin, Andrei Georgescu und Cristian Erbasu. „Atmospheric Boundary Layer Change“. International Journal of Fluid Mechanics Research 29, Nr. 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Vranková, Andrea, und Milan Palko. „Atmospheric Boundary Layer Modelling“. Applied Mechanics and Materials 820 (Januar 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Der volle Inhalt der Quelle
Annotation:
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Donner, L. J. „The atmospheric boundary layer“. Eos, Transactions American Geophysical Union 76, Nr. 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya und Takanori Uchida. „TC4 Atmospheric Boundary Layer“. Wind Engineers, JAWE 2006, Nr. 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

BLOTTNER, F. G. „Chemical Nonequilibrium Boundary Layer“. Journal of Spacecraft and Rockets 40, Nr. 5 (September 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Swain, Mark R., und Hubert Gallée. „Antarctic Boundary Layer Seeing“. Publications of the Astronomical Society of the Pacific 118, Nr. 846 (August 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Anderson, John D. „Ludwig Prandtl’s Boundary Layer“. Physics Today 58, Nr. 12 (Dezember 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kerschen, E. J. „Boundary Layer Receptivity Theory“. Applied Mechanics Reviews 43, Nr. 5S (01.05.1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Der volle Inhalt der Quelle
Annotation:
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bridges, Thomas J., und Philip J. Morris. „Boundary layer stability calculations“. Physics of Fluids 30, Nr. 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Esplin, G. J. „Boundary Layer Emission Monitoring“. JAPCA 38, Nr. 9 (September 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Mahrt, L. „Nocturnal Boundary-Layer Regimes“. Boundary-Layer Meteorology 88, Nr. 2 (August 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Trowbridge, John H., und Steven J. Lentz. „The Bottom Boundary Layer“. Annual Review of Marine Science 10, Nr. 1 (03.01.2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Arav, Nahum, und Mitchell C. Begelman. „Radiation-viscous boundary layer“. Astrophysical Journal 401 (Dezember 1992): 125. http://dx.doi.org/10.1086/172045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Cheskidov, Alexey. „Turbulent boundary layer equations“. Comptes Rendus Mathematique 334, Nr. 5 (Januar 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

BOTTARO, ALESSANDRO. „A ‘receptive’ boundary layer“. Journal of Fluid Mechanics 646 (08.03.2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Der volle Inhalt der Quelle
Annotation:
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bénech, B. „The atmospheric boundary layer“. Atmospheric Research 29, Nr. 3-4 (Mai 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Durand, Pierre. „Atmospheric boundary layer flows“. Atmospheric Research 41, Nr. 2 (Juli 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

King, J. C. „The atmospheric boundary layer“. Dynamics of Atmospheres and Oceans 18, Nr. 1-2 (Juni 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin und L. Rezeau. „Magnetopause and Boundary Layer“. Space Science Reviews 118, Nr. 1-4 (Juni 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Simpson, R. L. „Turbulent Boundary-Layer Separation“. Annual Review of Fluid Mechanics 21, Nr. 1 (Januar 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wu, Xiaohua, Parviz Moin und Jean-Pierre Hickey. „Boundary layer bypass transition“. Physics of Fluids 26, Nr. 9 (September 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Xu, Qin, und Wei Gu. „Semigeostrophic Frontal Boundary Layer“. Boundary-Layer Meteorology 104, Nr. 1 (Juli 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Businger, J. A. „The atmospheric boundary layer“. Earth-Science Reviews 34, Nr. 4 (August 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hobbs, S. E. „The atmospheric boundary layer“. Journal of Atmospheric and Terrestrial Physics 57, Nr. 3 (März 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto und Hendrik Lembeck. „The Boundary Layer Machine“. PAMM 17, Nr. 1 (Dezember 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mahrt, L. „Boundary-layer moisture regimes“. Quarterly Journal of the Royal Meteorological Society 117, Nr. 497 (Januar 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Smith, Roger K., und Michael T. Montgomery. „Hurricane boundary-layer theory“. Quarterly Journal of the Royal Meteorological Society 136, Nr. 652 (Oktober 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Anderson, E. J., W. R. McGillis und M. A. Grosenbaugh. „The boundary layer of swimming fish“. Journal of Experimental Biology 204, Nr. 1 (01.01.2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.

Der volle Inhalt der Quelle
Annotation:
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kuntz, D. W., V. A. Amatucci und A. L. Addy. „Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction“. AIAA Journal 25, Nr. 5 (Mai 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

S. S. PARASNIS, M. K. KULKARNI und J. S. PILLAI. „Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model“. Journal of Agrometeorology 3, Nr. 1-2 (01.09.2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Manisha Patel, Hema Surati und M. G. Timol. „Extension of Blasius Newtonian Boundary Layer to Blasius Non-Newtonian Boundary Layer“. Mathematical Journal of Interdisciplinary Sciences 9, Nr. 2 (08.06.2021): 35–41. http://dx.doi.org/10.15415/mjis.2021.92004.

Der volle Inhalt der Quelle
Annotation:
Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie