Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Boundary element methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Boundary element methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Boundary element methods"
Nedelec, Jean-Claude, Goong Chen und Jianxin Zhou. „Boundary Element Methods.“ Mathematics of Computation 60, Nr. 202 (April 1993): 851. http://dx.doi.org/10.2307/2153130.
Der volle Inhalt der QuelleChaillat-Loseille, Stéphanie, Ralf Hiptmair und Olaf Steinbach. „Boundary Element Methods“. Oberwolfach Reports 17, Nr. 1 (09.02.2021): 273–376. http://dx.doi.org/10.4171/owr/2020/5.
Der volle Inhalt der QuelleFeischl, Michael, Thomas Führer, Norbert Heuer, Michael Karkulik und Dirk Praetorius. „Adaptive Boundary Element Methods“. Archives of Computational Methods in Engineering 22, Nr. 3 (27.06.2014): 309–89. http://dx.doi.org/10.1007/s11831-014-9114-z.
Der volle Inhalt der QuelleKhoromskij, B. N., und J. M. Melenk. „Boundary Concentrated Finite Element Methods“. SIAM Journal on Numerical Analysis 41, Nr. 1 (Januar 2003): 1–36. http://dx.doi.org/10.1137/s0036142901391852.
Der volle Inhalt der QuelleBeskos, D. E., und U. Heise. „Boundary Element Methods in Mechanics“. Journal of Applied Mechanics 55, Nr. 4 (01.12.1988): 997. http://dx.doi.org/10.1115/1.3173761.
Der volle Inhalt der QuelleBonnet, Marc, Giulio Maier und Castrenze Polizzotto. „Symmetric Galerkin Boundary Element Methods“. Applied Mechanics Reviews 51, Nr. 11 (01.11.1998): 669–704. http://dx.doi.org/10.1115/1.3098983.
Der volle Inhalt der QuelleCostabel, Martin. „Principles of boundary element methods“. Computer Physics Reports 6, Nr. 1-6 (August 1987): 243–74. http://dx.doi.org/10.1016/0167-7977(87)90014-1.
Der volle Inhalt der QuelleHsiao, George C. „Boundary element methods—An overview“. Applied Numerical Mathematics 56, Nr. 10-11 (Oktober 2006): 1356–69. http://dx.doi.org/10.1016/j.apnum.2006.03.030.
Der volle Inhalt der QuelleFaust, G., und J. Szimmat. „Developments in boundary element methods“. Computer Methods in Applied Mechanics and Engineering 60, Nr. 2 (Februar 1987): 253–54. http://dx.doi.org/10.1016/0045-7825(87)90112-5.
Der volle Inhalt der QuelleFaermann, Birgit. „Adaptive galerkin boundary element methods“. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 78, S3 (1998): 909–10. http://dx.doi.org/10.1002/zamm.19980781527.
Der volle Inhalt der QuelleDissertationen zum Thema "Boundary element methods"
Of, Günther, Gregory J. Rodin, Olaf Steinbach und Matthias Taus. „Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods“. Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96885.
Der volle Inhalt der QuelleOstrowski, Jörg. „Boundary element methods for inductive hardening“. [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=973933941.
Der volle Inhalt der QuelleOnyango, Thomas Tonny Mboya. „Boundary element methods for solving inverse boundary conditions identification problems“. Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/11283/.
Der volle Inhalt der QuelleShah, Nawazish A. „Boundary element methods for road vehicle aerodynamics“. Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/26942.
Der volle Inhalt der QuelleLeon, Ernesto Pineda. „Dual boundary element methods for creep fracture“. Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435177.
Der volle Inhalt der QuelleOLIVEIRA, MARIA FERNANDA FIGUEIREDO DE. „CONVENTIONAL, HYBRID AND SIMPLIFIED BOUNDARY ELEMENT METHODS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5562@1.
Der volle Inhalt der QuelleApresentam-se as formulações, consolidando a nomenclatura e os principais conceitos dos métodos de elementos de contorno: convencional (MCCEC), híbrido de tensões (MHTEC), híbrido de deslocamentos (MHDEC) e híbrido simplificado de tensões (MHSTEC). proposto o método híbrido simplificado de deslocamentos (MHSDEC), em contrapartida ao MHSTEC, baseando-se nas mesmas hipóteses de aproximação de tensões e deslocamentos do MHDEC e supondo que a solução fundamental em termos de tensões seja válida no contorno. Como decorrência do MHSTEC e do MHSDEC, é apresentado também o método híbrido de malha reduzida dos elementos de contorno (MHMREC), com aplicação computacionalmente vantajosa a problemas no domínio da freqüência ou envolvendo materiais não-homogêneos. A partir da investigação das equações matriciais desses métodos, são identificadas quatro novas relações matriciais, das quais uma verifica-se como válida para a obtenção dos elementos das matrizes de flexibilidade e de deslocamento que não podem ser determinados por integração ou avaliação direta. Também é proposta a correta consideração, ainda não muito bem explicada na literatura, de que forças de superfície devem ser interpoladas em função de atributos de superfície e não de atributos nodais. São apresentadas aplicações numéricas para problemas de potencial para cada método mencionado, em que é verificada a validade das novas relações matriciais.
A consolidated, unified formulation of the conventional (CCBEM), hybrid stress (HSBEM), hybrid displacement (HDBEM) and simplified hybrid stress (SHSBEM) boundary element methods is presented. As a counterpart of SHSBEM, the simplified hybrid displacement boundary element method (SHDBEM) is proposed on the basis of the same stress and displacement approximation hypotheses of the HDBEM and on the assumption that stress fundamental solutions are also valid on the boundary. A combination of the SHSBEM and the SHDBEM gives rise to a provisorily called mesh-reduced hybrid boundary element method (MRHBEM), which seems computationally advantageous when applied to frequency domain problems or non-homogeneous materials. Four new matrix relations are identified, one of which may be used to obtain the flexibility and displacement matrix coefficients that cannot be determined by integration or direct evaluation. It is also proposed the correct consideration, still not well explained in the technical literature, that traction forces should be interpolated as functions of surface and not of nodal attributes. Numerical examples of potential problems are presented for each method, in which the validity of the new matrix relations is verified.
Zarco, Mark Albert. „Solution fo soil-structure interaction problems by coupled boundary element-finite element method /“. This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-164808/.
Der volle Inhalt der QuelleVu, Thu Hang. „Enhancing the scaled boundary finite element method“. University of Western Australia. School of Civil and Resource Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0068.
Der volle Inhalt der QuelleYan, Shu. „Efficient numerical methods for capacitance extraction based on boundary element method“. Texas A&M University, 2005. http://hdl.handle.net/1969.1/3230.
Der volle Inhalt der QuelleHamina, M. (Martti). „Some boundary element methods for heat conduction problems“. Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:951425614X.
Der volle Inhalt der QuelleBücher zum Thema "Boundary element methods"
Sauter, Stefan A., und Christoph Schwab. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68093-2.
Der volle Inhalt der QuelleKobayashi, S., und N. Nishimura, Hrsg. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-06153-4.
Der volle Inhalt der QuelleGwinner, Joachim, und Ernst Peter Stephan. Advanced Boundary Element Methods. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92001-6.
Der volle Inhalt der QuelleCruse, Thomas A., Hrsg. Advanced Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83003-7.
Der volle Inhalt der QuelleA, Brebbia C., und Aliabadi M. H, Hrsg. Adaptive finite and boundary element methods. Southampton: Computational Mechanics Publications, 1993.
Den vollen Inhalt der Quelle findenYing, Lung-an. Infinite element methods. Beijing: Peking University Press, 1995.
Den vollen Inhalt der Quelle findenAnnigeri, Balkrishna S., und Kadin Tseng, Hrsg. Boundary Element Methods in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2.
Der volle Inhalt der QuelleD, Ciskowski R., und Brebbia C. A, Hrsg. Boundary element methods in acoustics. Southampton: Computational Mechanics Publications, 1991.
Den vollen Inhalt der Quelle findenKythe, P. K. Introduction to boundary element methods. Boca Raton: CRC Press, 1995.
Den vollen Inhalt der Quelle findenManolis, G. D. Boundary element methods in elastodynamics. London: Unwin Hyman, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Boundary element methods"
Sauter, Stefan A., und Christoph Schwab. „Boundary Element Methods“. In Boundary Element Methods, 183–287. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_4.
Der volle Inhalt der QuelleSauter, Stefan A., und Christoph Schwab. „Cluster Methods“. In Boundary Element Methods, 403–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_7.
Der volle Inhalt der QuelleBeer, Gernot, und Benjamin Marussig. „Boundary Element Methods“. In Isogeometric Methods for Numerical Simulation, 121–72. Vienna: Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1843-6_3.
Der volle Inhalt der QuelleAliabadi, Ferri M. H. „Boundary Element Methods“. In Encyclopedia of Continuum Mechanics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53605-6_18-1.
Der volle Inhalt der QuelleKythe, Prem K. „Boundary Element Methods“. In Fundamental Solutions for Differential Operators and Applications, 231–65. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4106-5_11.
Der volle Inhalt der QuelleAliabadi, Ferri M. H. „Boundary Element Methods“. In Encyclopedia of Continuum Mechanics, 182–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_18.
Der volle Inhalt der QuelleWrobel, Luiz Carlos. „Boundary Element Methods“. In Encyclopedia of Applied and Computational Mathematics, 146–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_365.
Der volle Inhalt der QuelleSauter, Stefan A., und Christoph Schwab. „Introduction“. In Boundary Element Methods, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_1.
Der volle Inhalt der QuelleSauter, Stefan A., und Christoph Schwab. „Elliptic Differential Equations“. In Boundary Element Methods, 21–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_2.
Der volle Inhalt der QuelleSauter, Stefan A., und Christoph Schwab. „Elliptic Boundary Integral Equations“. In Boundary Element Methods, 101–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Boundary element methods"
Rajapakse, R. K. N. D. „Boundary element methods for piezoelectric solids“. In Smart Structures and Materials '97, herausgegeben von Vasundara V. Varadan und Jagdish Chandra. SPIE, 1997. http://dx.doi.org/10.1117/12.276560.
Der volle Inhalt der QuelleRott, Relindis, und Martin Schanz. „EFFICIENT BOUNDARY ELEMENT FORMULATION OF THERMOELASTICITY“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2025.7178.
Der volle Inhalt der QuelleYan, Shu, Jianguo Liu und Weiping Shi. „Improving boundary element methods for parasitic extraction“. In the 2003 conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1119772.1119823.
Der volle Inhalt der QuelleHardesty, Sean. „Approximate Shape Gradients with Boundary Element Methods.“ In Proposed for presentation at the Workshop on Fast Boundary Element Methods in Industrial Applications held October 13-16, 2022 in Hirschegg, Vorarlberg Austria. US DOE, 2022. http://dx.doi.org/10.2172/2005357.
Der volle Inhalt der QuelleSantana, Andre Pereira, Eder Lima de Albuquerque und Vania Maria Costa Sousa. „Boundary element method to analysis nonlinear in elasticity“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-1188.
Der volle Inhalt der QuelleGALLAHER, A., P. MACEY und D. HARDIE. „OPTMISING ACTIVE SONAR ARRAYS USING FINITE ELEMENT AND BOUNDARY ELEMENT METHODS“. In Sonar Transducers 1999. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/18686.
Der volle Inhalt der QuelleZhang, Zhiyuan, und Ashok V. Kumar. „Modal Analysis Using Implicit Boundary Finite Element Methods“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35100.
Der volle Inhalt der QuellePtaszny, Jacek. „Parallel fast multipole boundary element method applied to computational homogenization“. In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019145.
Der volle Inhalt der QuelleDargush, Gary, und Mikhail Grigoriev. „Boundary Element Methods for Unsteady Convective Heat Diffusion“. In 36th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4204.
Der volle Inhalt der QuelleSivak, Sergey A., Mikhail E. Royak und Ilya M. Stupakov. „Coupling of Vector and Scalar Boundary Element Methods“. In 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). IEEE, 2021. http://dx.doi.org/10.1109/apeie52976.2021.9647694.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Boundary element methods"
GRIFFITH, RICHARD O., und KENNETH K. MURATA. Proposed Extension of FETI Methods to the Boundary Element Technique. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/787646.
Der volle Inhalt der QuelleGray, L. J. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods). Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6369024.
Der volle Inhalt der QuelleBabuska, I., B. Q. Guo und E. P. Stephan. On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada215814.
Der volle Inhalt der QuelleTrahan, Corey, Jing-Ru Cheng und Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/48057.
Der volle Inhalt der QuelleZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan und Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0012049.
Der volle Inhalt der QuelleCox, J. V. A Preliminary Study on Finite Element-Hosted Couplings with the Boundary Element Method. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197539.
Der volle Inhalt der QuellePaulino, G. H., L. J. Gray und V. Zarikian. A posteriori pointwise error estimates for the boundary element method. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/42836.
Der volle Inhalt der QuelleHong, S. W., W. W. Schultz und W. P. Graebel. An Alternative Complex Boundary Element Method for Nonlinear Free Surface Problems. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada250817.
Der volle Inhalt der QuelleBabuska, Ivo, Victor Nistor und Nicolae Tarfulea. Approximate Dirichlet Boundary Conditions in the Generalized Finite Element Method (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, Februar 2006. http://dx.doi.org/10.21236/ada478502.
Der volle Inhalt der QuelleDriessen, B. J., und J. L. Dohner. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/677125.
Der volle Inhalt der Quelle