Auswahl der wissenschaftlichen Literatur zum Thema „Boundary element methods“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Boundary element methods" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Boundary element methods":

1

Nedelec, Jean-Claude, Goong Chen und Jianxin Zhou. „Boundary Element Methods.“ Mathematics of Computation 60, Nr. 202 (April 1993): 851. http://dx.doi.org/10.2307/2153130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chaillat-Loseille, Stéphanie, Ralf Hiptmair und Olaf Steinbach. „Boundary Element Methods“. Oberwolfach Reports 17, Nr. 1 (09.02.2021): 273–376. http://dx.doi.org/10.4171/owr/2020/5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Feischl, Michael, Thomas Führer, Norbert Heuer, Michael Karkulik und Dirk Praetorius. „Adaptive Boundary Element Methods“. Archives of Computational Methods in Engineering 22, Nr. 3 (27.06.2014): 309–89. http://dx.doi.org/10.1007/s11831-014-9114-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khoromskij, B. N., und J. M. Melenk. „Boundary Concentrated Finite Element Methods“. SIAM Journal on Numerical Analysis 41, Nr. 1 (Januar 2003): 1–36. http://dx.doi.org/10.1137/s0036142901391852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Beskos, D. E., und U. Heise. „Boundary Element Methods in Mechanics“. Journal of Applied Mechanics 55, Nr. 4 (01.12.1988): 997. http://dx.doi.org/10.1115/1.3173761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bonnet, Marc, Giulio Maier und Castrenze Polizzotto. „Symmetric Galerkin Boundary Element Methods“. Applied Mechanics Reviews 51, Nr. 11 (01.11.1998): 669–704. http://dx.doi.org/10.1115/1.3098983.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This review article concerns a methodology for solving numerically, for engineering purposes, boundary and initial-boundary value problems by a peculiar approach characterized by the following features: the continuous formulation is centered on integral equations based on the combined use of single-layer and double-layer sources, so that the integral operator turns out to be symmetric with respect to a suitable bilinear form. The discretization is performed either on a variational basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being chosen so that the variables in the approximate formulation are generalized variables in Prager’s sense. As main consequences of the above provisions, symmetry is exhibited by matrices with a key role in the algebraized versions; some quadratic forms have a clear energy meaning; variational properties characterize the solutions and other results, invalid in traditional boundary element methods enrich the theory underlying the computational applications. The present survey outlines recent theoretical and computational developments of the title methodology with particular reference to linear elasticity, elastoplasticity, fracture mechanics, time-dependent problems, variational approaches, singular integrals, approximation issues, sensitivity analysis, coupling of boundary and finite elements, and computer implementations. Areas and aspects which at present require further research are identified, and comparative assessments are attempted with respect to traditional boundary integral-elements. This article includes 176 references.
7

Costabel, Martin. „Principles of boundary element methods“. Computer Physics Reports 6, Nr. 1-6 (August 1987): 243–74. http://dx.doi.org/10.1016/0167-7977(87)90014-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hsiao, George C. „Boundary element methods—An overview“. Applied Numerical Mathematics 56, Nr. 10-11 (Oktober 2006): 1356–69. http://dx.doi.org/10.1016/j.apnum.2006.03.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Faust, G., und J. Szimmat. „Developments in boundary element methods“. Computer Methods in Applied Mechanics and Engineering 60, Nr. 2 (Februar 1987): 253–54. http://dx.doi.org/10.1016/0045-7825(87)90112-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Faermann, Birgit. „Adaptive galerkin boundary element methods“. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 78, S3 (1998): 909–10. http://dx.doi.org/10.1002/zamm.19980781527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Boundary element methods":

1

Of, Günther, Gregory J. Rodin, Olaf Steinbach und Matthias Taus. „Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods“. Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96885.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element methods are used. Error and stability analysis is presented for some of the methods. Numerical examples suggest that all three methods exhibit very similar convergence properties, consistent with available theoretical results.
2

Ostrowski, Jörg. „Boundary element methods for inductive hardening“. [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=973933941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Onyango, Thomas Tonny Mboya. „Boundary element methods for solving inverse boundary conditions identification problems“. Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/11283/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis explores various features of the boundary element method (BEM) used in solving heat transfer boundary conditions identification problems. In particular, we present boundary integral equation (BIE) formulations and procedures of the numerical computation for the approximation of the boundary temperatures, heat fluxes and space, time or temperature dependent heat transfer coefficients. There are many practical heat transfer situations where such problems occur, for example in high temperature regions or hostile environments, such as in combustion chambers, steel cooling processes, etc., in which the actual method of heat transfer on the surface is unknown. In such situations the boundary condition relating the heat flux to the difference between the boundary temperature and that of the surrounding fluid is represented by an unknown function which may depend on space, time, or temperature. In these inverse heat conduction problems (IHCP), the BEM is formulated as a minimization of some functional that measures the discrepancy between the measured data, say the average temperature on a portion of the boundary or at an instant over the whole domain. The minimization provides solutions that are consistent with the data. This indicates that the BEM algorithms for the IRCP are robust, stable and predict reliable results. When the input data is noisy, we have used the truncated singular value decomposition and the Tikhonov regularisation methods to stabilise the solution of the IRCI' boundary conditions identification. Numerical approximations have been obtained and, where possible, the results obtained are compared to the analytical solutions.
4

Shah, Nawazish A. „Boundary element methods for road vehicle aerodynamics“. Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/26942.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The technique of the boundary element method consists of subdividing the boundary of the field of a function into a series of discrete elements, over which the function can vary. This technique offers important advantages over domain type solutions such as finite elements and finite differences. One of the most important features of the method is the much smaller system of equations and the considerable reduction in data required to run a program. Furthermore, the method is well-suited to problems with an infinite domain. Boundary element methods can be formulated using two different approaches called the ‘direct' and the ‘indirect' methods.
5

Leon, Ernesto Pineda. „Dual boundary element methods for creep fracture“. Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

OLIVEIRA, MARIA FERNANDA FIGUEIREDO DE. „CONVENTIONAL, HYBRID AND SIMPLIFIED BOUNDARY ELEMENT METHODS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5562@1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Apresentam-se as formulações, consolidando a nomenclatura e os principais conceitos dos métodos de elementos de contorno: convencional (MCCEC), híbrido de tensões (MHTEC), híbrido de deslocamentos (MHDEC) e híbrido simplificado de tensões (MHSTEC). proposto o método híbrido simplificado de deslocamentos (MHSDEC), em contrapartida ao MHSTEC, baseando-se nas mesmas hipóteses de aproximação de tensões e deslocamentos do MHDEC e supondo que a solução fundamental em termos de tensões seja válida no contorno. Como decorrência do MHSTEC e do MHSDEC, é apresentado também o método híbrido de malha reduzida dos elementos de contorno (MHMREC), com aplicação computacionalmente vantajosa a problemas no domínio da freqüência ou envolvendo materiais não-homogêneos. A partir da investigação das equações matriciais desses métodos, são identificadas quatro novas relações matriciais, das quais uma verifica-se como válida para a obtenção dos elementos das matrizes de flexibilidade e de deslocamento que não podem ser determinados por integração ou avaliação direta. Também é proposta a correta consideração, ainda não muito bem explicada na literatura, de que forças de superfície devem ser interpoladas em função de atributos de superfície e não de atributos nodais. São apresentadas aplicações numéricas para problemas de potencial para cada método mencionado, em que é verificada a validade das novas relações matriciais.
A consolidated, unified formulation of the conventional (CCBEM), hybrid stress (HSBEM), hybrid displacement (HDBEM) and simplified hybrid stress (SHSBEM) boundary element methods is presented. As a counterpart of SHSBEM, the simplified hybrid displacement boundary element method (SHDBEM) is proposed on the basis of the same stress and displacement approximation hypotheses of the HDBEM and on the assumption that stress fundamental solutions are also valid on the boundary. A combination of the SHSBEM and the SHDBEM gives rise to a provisorily called mesh-reduced hybrid boundary element method (MRHBEM), which seems computationally advantageous when applied to frequency domain problems or non-homogeneous materials. Four new matrix relations are identified, one of which may be used to obtain the flexibility and displacement matrix coefficients that cannot be determined by integration or direct evaluation. It is also proposed the correct consideration, still not well explained in the technical literature, that traction forces should be interpolated as functions of surface and not of nodal attributes. Numerical examples of potential problems are presented for each method, in which the validity of the new matrix relations is verified.
7

Zarco, Mark Albert. „Solution fo soil-structure interaction problems by coupled boundary element-finite element method /“. This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-164808/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vu, Thu Hang. „Enhancing the scaled boundary finite element method“. University of Western Australia. School of Civil and Resource Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
[Truncated abstract] The scaled boundary finite element method is a novel computational method developed by Wolf and Song which reduces partial differential equations to a set of ordinary linear differential equations. The method, which is semi-analytical, is suitable for solving linear elliptic, parabolic and hyperbolic partial differential equations. The method has proved to be very efficient in solving various types of problems, including problems of potential flow and diffusion. The method out performs the finite element method when solving unbounded domain problems and problems involving stress singularities and discontinuities. The scaled boundary finite element method involves solution of a quadratic eigenproblem, the computational expense of which increases rapidly as the number of degrees of freedom increases. Consequently, to a greater extent than the finite element method, it is desirable to obtain solutions at a specified level of accuracy while using the minimum number of degrees of freedom necessary. In previous work, no systematic study had been performed so far into the use of elements of higher order, and no consideration made of p adaptivity. . . The primal problem is solved normally using the basic scaled boundary finite element method. The dual problem is solved by the new technique using the fundamental solution. A guaranteed upper error bound based on the Cauchy-Schwarz inequality is derived. A iv goal-oriented p-hierarchical adaptive procedure is proposed and implemented efficiently in the scaled boundary finite element method.
9

Yan, Shu. „Efficient numerical methods for capacitance extraction based on boundary element method“. Texas A&M University, 2005. http://hdl.handle.net/1969.1/3230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Fast and accurate solvers for capacitance extraction are needed by the VLSI industry in order to achieve good design quality in feasible time. With the development of technology, this demand is increasing dramatically. Three-dimensional capacitance extraction algorithms are desired due to their high accuracy. However, the present 3D algorithms are slow and thus their application is limited. In this dissertation, we present several novel techniques to significantly speed up capacitance extraction algorithms based on boundary element methods (BEM) and to compute the capacitance extraction in the presence of floating dummy conductors. We propose the PHiCap algorithm, which is based on a hierarchical refinement algorithm and the wavelet transform. Unlike traditional algorithms which result in dense linear systems, PHiCap converts the coefficient matrix in capacitance extraction problems to a sparse linear system. PHiCap solves the sparse linear system iteratively, with much faster convergence, using an efficient preconditioning technique. We also propose a variant of PHiCap in which the capacitances are solved for directly from a very small linear system. This small system is derived from the original large linear system by reordering the wavelet basis functions and computing an approximate LU factorization. We named the algorithm RedCap. To our knowledge, RedCap is the first capacitance extraction algorithm based on BEM that uses a direct method to solve a reduced linear system. In the presence of floating dummy conductors, the equivalent capacitances among regular conductors are required. For floating dummy conductors, the potential is unknown and the total charge is zero. We embed these requirements into the extraction linear system. Thus, the equivalent capacitance matrix is solved directly. The number of system solves needed is equal to the number of regular conductors. Based on a sensitivity analysis, we propose the selective coefficient enhancement method for increasing the accuracy of selected coupling or self-capacitances with only a small increase in the overall computation time. This method is desirable for applications, such as crosstalk and signal integrity analysis, where the coupling capacitances between some conductors needs high accuracy. We also propose the variable order multipole method which enhances the overall accuracy without raising the overall multipole expansion order. Finally, we apply the multigrid method to capacitance extraction to solve the linear system faster. We present experimental results to show that the techniques are significantly more efficient in comparison to existing techniques.
10

Hamina, M. (Martti). „Some boundary element methods for heat conduction problems“. Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:951425614X.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract This thesis summarizes certain boundary element methods applied to some initial and boundary value problems. Our model problem is the two-dimensional homogeneous heat conduction problem with vanishing initial data. We use the heat potential representation of the solution. The given boundary conditions, as well as the choice of the representation formula, yield various boundary integral equations. For the sake of simplicity, we use the direct boundary integral approach, where the unknown boundary density appearing in the boundary integral equation is a quantity of physical meaning. We consider two different sets of boundary conditions, the Dirichlet problem, where the boundary temperature is given and the Neumann problem, where the heat flux across the boundary is given. Even a nonlinear Neumann condition satisfying certain monotonicity and growth conditions is possible. The approach yields a nonlinear boundary integral equation of the second kind. In the stationary case, the model problem reduces to a potential problem with a nonlinear Neumann condition. We use the spaces of smoothest splines as trial functions. The nonlinearity is approximated by using the L2-orthogonal projection. The resulting collocation scheme retains the optimal L2-convergence. Numerical experiments are in agreement with this result. This approach generalizes to the time dependent case. The trial functions are tensor products of piecewise linear and piecewise constant splines. The proposed projection method uses interpolation with respect to the space variable and the orthogonal projection with respect to the time variable. Compared to the Galerkin method, this approach simplifies the realization of the discrete matrix equations. In addition, the rate of the convergence is of optimal order. On the other hand, the Dirichlet problem, where the boundary temperature is given, leads to a single layer heat operator equation of the first kind. In the first approach, we use tensor products of piecewise linear splines as trial functions with collocation at the nodal points. Stability and suboptimal L2-convergence of the method were proved in the case of a circular domain. Numerical experiments indicate the expected quadratic L2-convergence. Later, a Petrov-Galerkin approach was proposed, where the trial functions were tensor products of piecewise linear and piecewise constant splines. The resulting approximative scheme is stable and convergent. The analysis has been carried out in the cases of the single layer heat operator and the hypersingular heat operator. The rate of the convergence with respect to the L2-norm is also here of suboptimal order.

Bücher zum Thema "Boundary element methods":

1

Sauter, Stefan A., und Christoph Schwab. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68093-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kobayashi, S., und N. Nishimura, Hrsg. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-06153-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gwinner, Joachim, und Ernst Peter Stephan. Advanced Boundary Element Methods. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92001-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cruse, Thomas A., Hrsg. Advanced Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83003-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

A, Brebbia C., und Aliabadi M. H, Hrsg. Adaptive finite and boundary element methods. Southampton: Computational Mechanics Publications, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ying, Lung-an. Infinite element methods. Beijing: Peking University Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Annigeri, Balkrishna S., und Kadin Tseng, Hrsg. Boundary Element Methods in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kythe, P. K. Introduction to boundary element methods. Boca Raton: CRC Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Manolis, G. D. Boundary element methods in elastodynamics. London: Unwin Hyman, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

D, Ciskowski R., und Brebbia C. A, Hrsg. Boundary element methods in acoustics. Southampton: Computational Mechanics Publications, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Boundary element methods":

1

Sauter, Stefan A., und Christoph Schwab. „Boundary Element Methods“. In Boundary Element Methods, 183–287. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sauter, Stefan A., und Christoph Schwab. „Cluster Methods“. In Boundary Element Methods, 403–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Beer, Gernot, und Benjamin Marussig. „Boundary Element Methods“. In Isogeometric Methods for Numerical Simulation, 121–72. Vienna: Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1843-6_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Aliabadi, Ferri M. H. „Boundary Element Methods“. In Encyclopedia of Continuum Mechanics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53605-6_18-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kythe, Prem K. „Boundary Element Methods“. In Fundamental Solutions for Differential Operators and Applications, 231–65. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4106-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aliabadi, Ferri M. H. „Boundary Element Methods“. In Encyclopedia of Continuum Mechanics, 182–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wrobel, Luiz Carlos. „Boundary Element Methods“. In Encyclopedia of Applied and Computational Mathematics, 146–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sauter, Stefan A., und Christoph Schwab. „Introduction“. In Boundary Element Methods, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sauter, Stefan A., und Christoph Schwab. „Elliptic Differential Equations“. In Boundary Element Methods, 21–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sauter, Stefan A., und Christoph Schwab. „Elliptic Boundary Integral Equations“. In Boundary Element Methods, 101–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Boundary element methods":

1

Rajapakse, R. K. N. D. „Boundary element methods for piezoelectric solids“. In Smart Structures and Materials '97, herausgegeben von Vasundara V. Varadan und Jagdish Chandra. SPIE, 1997. http://dx.doi.org/10.1117/12.276560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rott, Relindis, und Martin Schanz. „EFFICIENT BOUNDARY ELEMENT FORMULATION OF THERMOELASTICITY“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2025.7178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yan, Shu, Jianguo Liu und Weiping Shi. „Improving boundary element methods for parasitic extraction“. In the 2003 conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1119772.1119823.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Santana, Andre Pereira, Eder Lima de Albuquerque und Vania Maria Costa Sousa. „Boundary element method to analysis nonlinear in elasticity“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-1188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ptaszny, Jacek. „Parallel fast multipole boundary element method applied to computational homogenization“. In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Zhiyuan, und Ashok V. Kumar. „Modal Analysis Using Implicit Boundary Finite Element Methods“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Modal analysis is widely used for linear dynamic analysis of structures. The finite element method is used to numerically compute stiffness and mass matrices and the corresponding eigenvalue problem is solved to determine the natural frequencies and mode shapes of vibration. Implicit boundary method was developed to use equations of the boundary to apply boundary conditions and loads so that a background mesh can be used for analysis. A background mesh is easier to generate because the elements do not have to conform to the given geometry and therefore uniform regular shaped elements can be used. In this paper, we show that this approach is suitable for modal analysis and modal superposition techniques as well. Furthermore, the implicit boundary method also allows higher order elements that use B-spline approximations. Several test examples are studied for verification.
7

Dargush, Gary, und Mikhail Grigoriev. „Boundary Element Methods for Unsteady Convective Heat Diffusion“. In 36th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sivak, Sergey A., Mikhail E. Royak und Ilya M. Stupakov. „Coupling of Vector and Scalar Boundary Element Methods“. In 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). IEEE, 2021. http://dx.doi.org/10.1109/apeie52976.2021.9647694.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Beer, Gernot. „ADVANCES IN THE BOUNDARY ELEMENT METHOD IN GEOMECHANICS“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2021.4408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Peixoto, Rodrigo Guerra, Samuel Silva Penna, Gabriel de Oliveira Ribeiro und Roque Luiz da Silva Pitangueira. „Non-local constitutive modelling by the boundary element method“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Boundary element methods":

1

GRIFFITH, RICHARD O., und KENNETH K. MURATA. Proposed Extension of FETI Methods to the Boundary Element Technique. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/787646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gray, L. J. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods). Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6369024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Babuska, I., B. Q. Guo und E. P. Stephan. On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada215814.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cox, J. V. A Preliminary Study on Finite Element-Hosted Couplings with the Boundary Element Method. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan und Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0012049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this project, Intelligent Automation, Incorporated (IAI) and Oak Ridge National Lab (ORNL) propose a novel and integrated approach to inspect the mechanical dents and metal loss in pipelines. It combines the state-of-the-art SH wave Electromagnetic Acoustic Transducer (EMAT) technique, through detailed numerical modeling, data collection instrumentation, and advanced signal processing and pattern classifications, to detect and characterize mechanical defects in the underground pipeline transportation infrastructures. The technique has four components: (1) thorough guided wave modal analysis, (2) recently developed three-dimensional (3-D) Boundary Element Method (BEM) for best operational condition selection and defect feature extraction, (3) ultrasonic Shear Horizontal (SH) waves EMAT sensor design and data collection, and (4) advanced signal processing algorithm like a nonlinear split-spectrum filter, Principal Component Analysis (PCA) and Discriminant Analysis (DA) for signal-to-noise-ratio enhancement, crack signature extraction, and pattern classification. This technology not only can effectively address the problems with the existing methods, i.e., to detect the mechanical dents and metal loss in the pipelines consistently and reliably but also it is able to determine the defect shape and size to a certain extent.
6

Paulino, G. H., L. J. Gray und V. Zarikian. A posteriori pointwise error estimates for the boundary element method. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/42836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hong, S. W., W. W. Schultz und W. P. Graebel. An Alternative Complex Boundary Element Method for Nonlinear Free Surface Problems. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada250817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Babuska, Ivo, Victor Nistor und Nicolae Tarfulea. Approximate Dirichlet Boundary Conditions in the Generalized Finite Element Method (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, Februar 2006. http://dx.doi.org/10.21236/ada478502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Driessen, B. J., und J. L. Dohner. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/677125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Andraka, C. E., G. A. Knorovsky und C. A. Drewien. Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe. Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/672137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie