Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bosonic analytic continuation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bosonic analytic continuation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bosonic analytic continuation"
Ong, Perkins Jon, und Danilo M. Yanga. „Damping of spin waves in high-Tc superconductors in the spin polaron formulation“. International Journal of Modern Physics B 32, Nr. 15 (18.06.2018): 1850190. http://dx.doi.org/10.1142/s0217979218501904.
Der volle Inhalt der QuelleBRESSLOFF, P. C., J. G. TAYLOR und A. RESTUCCIA. „A FUNCTIONAL LIGHT-CONE GAUGE CONSTRUCTION OF A BOSONIC STRING COMPACTIFIED ON A TORUS“. International Journal of Modern Physics A 03, Nr. 02 (Februar 1988): 451–86. http://dx.doi.org/10.1142/s0217751x88000175.
Der volle Inhalt der QuelleNg, K. K. „Bilayered Spin-S Heisenberg Model in Fractional Dimensions“. International Journal of Modern Physics B 12, Nr. 18 (20.07.1998): 1809–12. http://dx.doi.org/10.1142/s0217979298001034.
Der volle Inhalt der QuelleMANDAL, GAUTAM, ANIRVAN M. SENGUPTA und SPENTA R. WADIA. „INTERACTIONS AND SCATTERING IN d = 1 STRING THEORY“. Modern Physics Letters A 06, Nr. 16 (30.05.1991): 1465–77. http://dx.doi.org/10.1142/s0217732391001585.
Der volle Inhalt der QuelleOstrovska, Sofiya. „On the properties of the limit q-Bernstein operator“. Studia Scientiarum Mathematicarum Hungarica 48, Nr. 2 (01.06.2011): 160–79. http://dx.doi.org/10.1556/sscmath.48.2011.2.1164.
Der volle Inhalt der QuelleFeng, Xin, Xu Wang und Yue Zhang. „Research on public emotional polarization and public opinion evolution of OTC and learning during the COVID-19 epidemic: taking the topic of OTC on Zhihu as an example“. Library Hi Tech 40, Nr. 2 (16.12.2021): 286–303. http://dx.doi.org/10.1108/lht-09-2021-0323.
Der volle Inhalt der QuelleNogaki, Kosuke, und Hiroshi Shinaoka. „Bosonic Nevanlinna Analytic Continuation“. Journal of the Physical Society of Japan 92, Nr. 3 (15.03.2023). http://dx.doi.org/10.7566/jpsj.92.035001.
Der volle Inhalt der QuelleNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro und Steven Johnston. „SmoQyDEAC.jl: A differential evolution package for the analytic continuation of imaginary time correlation functions“. SciPost Physics Codebases, 12.11.2024. http://dx.doi.org/10.21468/scipostphyscodeb.39.
Der volle Inhalt der QuelleNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro und Steven Johnston. „Codebase release r1.1 for SmoQyDEAC.jl“. SciPost Physics Codebases, 12.11.2024. http://dx.doi.org/10.21468/scipostphyscodeb.39-r1.1.
Der volle Inhalt der QuellePalermo, A., M. Buzzegoli und F. Becattini. „Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field“. Journal of High Energy Physics 2021, Nr. 10 (Oktober 2021). http://dx.doi.org/10.1007/jhep10(2021)077.
Der volle Inhalt der QuelleDissertationen zum Thema "Bosonic analytic continuation"
Rotella, Francesco. „Theoretical methods for the role of correlations on high-Tc superconductivity“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP181.
Der volle Inhalt der QuelleThis thesis includes two projects. In the first one, we develop and bench-mark an A.I. model to solve bosonic analytic continuation problems, that is generating the right optical conductivity starting from the current-current correlation function. Recent work has demonstrated that Neural Network can outperform Maximum Entropy methods for the analytical continuation of noisy Matsubara Green’s function in many-body physics, both in accuracy and computational cost. Here we generalize this approach to the conductivity response functions. A combination of Beta distributions is proposed as way to generate training sets that avoid limitations associated with monotonous flat scenery, as they offer a broad set of qualitatively different training spectra. We find that Neural Networks are particularly efficient at predicting DC conductivity, a notoriously difficult quantity for Maximum Entropy methods. We clarify the procedure to use the model in a thermally agnostic fashion, meaning that a Neural Network trained at a specific temperature could be used at different ones through a rescaling routine. Finally, we propose a general definition of confidence to be associated with the prediction of the optical conductivity profile, a much needed missing tile in the A.I. analytic continuation landscape, and provide some insight on its applicability. The second project focuses on cuprate high temperature superconductors. Recent experimental work has shown a strong anticorrelation between superconducting order parameter and the so called charge transfer gap. This involves both oxygen and copper orbitals and originates from the strong electronic correlation typical of these materials. In particular, a direct measure of these observables and their anti-correlation has been obtained by scanning tunneling microscopy experiments. Taking advantage from the natural modulation of the apical oxygen position on the surface of bi-layered BSCCO, which also modulate these observable in space, the anti-correlation could be validated at different sites of the same material. Using an advanced Dynamical Mean Field Theory method applied to the inhomogeneous Emery-Hubbard model, which takes into account both the copper and the oxygen orbitals of the cuprate planes, we are able to simulate the experimental situation. By using a pseudoinversion extrapolation method, we can show that the anti-correlation is present and strong in this model, though the strong spatial variation reported in experiments does not occur. This calls for a critical re-evaluation of the interpretation of the experimental results within our modeling. We finally discuss these findings in relation with the critical transition temperature, the superconducting order parameter and charge transfer gap of various known cuprate compounds