Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Borosilicates de baryum.

Zeitschriftenartikel zum Thema „Borosilicates de baryum“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Borosilicates de baryum" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Moridi, G. R., A. Nouruzi und C. A. Hogarth. „Electrical properties of barium-borosilicate glasses“. Journal of Materials Science 26, Nr. 23 (Dezember 1991): 6271–74. http://dx.doi.org/10.1007/bf02387803.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kingnoi, Namthip, Jiratchaya Ayawanna und Nattapol Laorodphan. „Barium (Zinc) Borosilicate Sealing Glass and Joining Interface with YSZ Electrolyte and Crofer22APU Interconnect in SOFCs“. Solid State Phenomena 283 (September 2018): 72–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.283.72.

Der volle Inhalt der Quelle
Annotation:
This work describes the performance of two glass-ceramic compositions, BaO-SiO2-B2O3 (Barium borosilicate glass: BaBS) and BaO-ZnO-SiO2-B2O3 (Barium zinc borosilicate glass: BaBS−Zn), used for joining YSZ ceramic electrolytes and Crofer22APU metallic interconnects in solid oxide fuel cells (SOFCs) working at 800°C for 50 h. ZnO had a negative effect on the thermal expansion coefficient (TEC) value of the BaBS-Zn glass-ceramic. XRD and SEM results revealed the formation of rod-shaped barium zinc silicate crystalline phases in the BaBS-Zn glass, which was accompanied by cracks and poor adherence at the YSZ/BaBS-Zn joint interface after working at 800°C for 50 h. The formation of cracks parallel to the interface between the Crofer22APU interconnect and the BaBS-Zn glass-ceramic sealant was observed due to the severe TEC mismatch. The BaBS glass–ceramic adhered well to the YSZ electrolyte as well as the pre-oxidized Crofer22APU without cracks. Chromium oxide scale developed between the pre-oxidized Crofer22APU/BaBS glass-ceramic joint interface with increasing the pre-oxidation temperature. This study shows that BaBS glass-ceramic is more effective than BaBS-Zn as a sealant for joining YSZ electrolytes and Crofer22APU metallic interconnects in SOFCs working at 800°C for 50 h.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Savage, David, Jane E. Robbins und Richard J. Merriman. „Hydrothermal crystallization of a radioactive waste storage glass“. Mineralogical Magazine 49, Nr. 351 (April 1985): 195–201. http://dx.doi.org/10.1180/minmag.1985.049.351.06.

Der volle Inhalt der Quelle
Annotation:
AbstractA borosilicate glass, containing 25 wt. % of simulated high-level radioactive waste has been reacted with water at 350°C and 500 bars for 14 and 48 days using large-volume ‘cold-seal’ high-pressure equipment. Under these conditions the glass crystallizes a suite of mineral phases including: albite, NaAlSi3O8; aegirine, NaFeSi2O6; riebeckite, Na2Fe2(Fe,Mg)3Si8O22(OH)2; zektzerite, LiNaZrSi6O15; barium-strontium molybdate, (Ba,Sr)MoO4; stillwellite, (Nd,Ce,La)BSiO5; willemite, Zn2SiO4; smectite; a lithium-sodium borosilicate hydrate; melilite (åkermanite), Ca2MgSi2O7. A description of the morphology of these phases is given, together with a number of chemical analyses. The implications of the incorporation of waste species in these mineral phases to the disposal of high-level radioactive waste is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kavaz, E., F. I. El_Agawany, H. O. Tekin, U. Perişanoğlu und Y. S. Rammah. „Nuclear radiation shielding using barium borosilicate glass ceramics“. Journal of Physics and Chemistry of Solids 142 (Juli 2020): 109437. http://dx.doi.org/10.1016/j.jpcs.2020.109437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kumar, Vishal, O. P. Pandey und K. Singh. „Structural and optical properties of barium borosilicate glasses“. Physica B: Condensed Matter 405, Nr. 1 (Januar 2010): 204–7. http://dx.doi.org/10.1016/j.physb.2009.08.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mishra, R. K., V. Sudarsan, A. K. Tyagi, C. P. Kaushik, Kanwar Raj und S. K. Kulshreshtha. „Structural studies of ThO2 containing barium borosilicate glasses“. Journal of Non-Crystalline Solids 352, Nr. 28-29 (August 2006): 2952–57. http://dx.doi.org/10.1016/j.jnoncrysol.2006.04.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mishra, R. K., P. U. Sastry, A. K. Tyagi, C. P. Kaushik und Kanwar Raj. „SAXS study of barium borosilicate glasses containing ThO2“. Journal of Alloys and Compounds 466, Nr. 1-2 (Oktober 2008): 543–45. http://dx.doi.org/10.1016/j.jallcom.2007.11.092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yadav, Avadhesh Kumar, C. R. Gautam und Prabhakar Singh. „Crystallization and dielectric properties of Fe2O3 doped barium strontium titanate borosilicate glass“. RSC Advances 5, Nr. 4 (2015): 2819–26. http://dx.doi.org/10.1039/c4ra11301b.

Der volle Inhalt der Quelle
Annotation:
An attempt has been made to prepare barium strontium titanate borosilicate glasses in the system, 64[(Ba1−xSrx)·TiO3]–30[2SiO2·B2O3]–5[K2O]–1[Fe2O3] (0.4 ≤ x ≤ 1.0), using the conventional melt-quench method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tekin, Huseyin Ozan, Shamselden Abdelrasoul Mohamad Issa, Karem Abdel-Azeem Mahmoud, Fouad Ismail El-Agawany, Yasser Saad Rammah, Gulfem Susoy, Mohammed Sultan Al-Buriahi, Mohamed Mahmoud Abuzaid und Iskender Akkurt. „Nuclear radiation shielding competences of barium-reinforced borosilicate glasses“. Emerging Materials Research 9, Nr. 4 (01.12.2020): 1131–44. http://dx.doi.org/10.1680/jemmr.20.00185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wu, Jenn-Ming, und Hong-Lin Huang. „Microwave properties of zinc, barium and lead borosilicate glasses“. Journal of Non-Crystalline Solids 260, Nr. 1-2 (Dezember 1999): 116–24. http://dx.doi.org/10.1016/s0022-3093(99)00513-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Mandal, Ashis Kumar, Dinesh Agrawal und Ranjan Sen. „Preparation of homogeneous barium borosilicate glass using microwave energy“. Journal of Non-Crystalline Solids 371-372 (Juli 2013): 41–46. http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mishra, R. K., Pranesh Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale und Kanwar Raj. „Studies on immobilization of thorium in barium borosilicate glass“. Journal of Nuclear Materials 360, Nr. 2 (Februar 2007): 143–50. http://dx.doi.org/10.1016/j.jnucmat.2006.09.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Li, Huidong, Lang Wu, Xin Wang, Dong Xu, Yuancheng Teng und Yuxiang Li. „Crystallization behavior and microstructure of barium borosilicate glass–ceramics“. Ceramics International 41, Nr. 10 (Dezember 2015): 15202–7. http://dx.doi.org/10.1016/j.ceramint.2015.08.095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Santha, N., T. K. Nideep und S. R. Rejisha. „Synthesis and characterization of barium borosilicate glass–Al2O3 composites“. Journal of Materials Science: Materials in Electronics 23, Nr. 7 (28.12.2011): 1435–41. http://dx.doi.org/10.1007/s10854-011-0609-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mishra, R. K., Sumit Kumar, B. S. Tomar, A. K. Tyagi, C. P. Kaushik, Kanwar Raj und V. K. Manchanda. „Effect of barium on diffusion of sodium in borosilicate glass“. Journal of Hazardous Materials 156, Nr. 1-3 (August 2008): 129–34. http://dx.doi.org/10.1016/j.jhazmat.2007.12.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Tuscharoen, Suparat, Suwimon Ruengsri und Jakrapong Kaewkhao. „Development of Barium Borosilicate Glass Using Rice Husk Ash: Effect of BaO“. Advanced Materials Research 770 (September 2013): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.770.201.

Der volle Inhalt der Quelle
Annotation:
This paper is report on the physical and optical properties of development barium-borate-rice husk ash (BaBRHA) glass system. The glasses containing BaO in xBaO:(80-x)B2O3:20RHA where x = 30, 35, 40 and 45 wt% have been prepared by melt quenching technique. The physical properties of this glass are shown from density data. The optical properties were investigated from refractive index and transmission by using Abbe-refractometer and UV-visible spectrometer respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ehab, Mohamed, Elsayed Salama, Ahmed Ashour, Mohamed Attallah und Hosam M. Saleh. „Optical Properties and Gamma Radiation Shielding Capability of Transparent Barium Borosilicate Glass Composite“. Sustainability 14, Nr. 20 (16.10.2022): 13298. http://dx.doi.org/10.3390/su142013298.

Der volle Inhalt der Quelle
Annotation:
In this study, both radiation shielding capability and optical properties of prepared SiO2-ZnO-Na2CO3-H3BO3-BaCO3 glass composite with different concentrations of barium carbonate (0–30 mol%) have been studied. Gamma attenuation properties, such as the mass attenuation coefficient (MAC), mean free path (MFP), and exposure build-up factor (EBF), are experimentally and theoretically investigated. The detected XRD patterns for the prepared glass composites confirm their amorphous nature. It is evident from the obtained data that all tested parameters, such as mass density, molar volume, refractive index, dielectric constant, refraction loss (%), and molar refraction, have been increased as BaCO3 mol% increased. At the same time, the results of the optical bandgap show a gradual decrease with increasing barium concentration. It was also found that the mass attenuation coefficients increased with BaCO3 concentration from 0.078 at zero mol% BaCO3 to 0.083 cm2/g at 30 mol%. Moreover, the half-value layer (HVL) and the exposure build-up factor (EBF) up to 40 mfp penetration depth were investigated in addition to the effective atomic number (Zeff) and the corresponding equivalent atomic number (Zeq) at the energy range of 0.015–15 MeV. The produced glass composite might be considered for many shielding applications based on the obtained results that require a transparent shielding material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sava, Bogdan Alexandru, Adriana Diaconu, Luminita Daniela Ursu, Lucica Boroica, M. Elisa, Cristiana Eugenia Ana Grigorescu, Ileana Cristina Vasiliu et al. „Ecological Silicate Glasses“. Advanced Materials Research 39-40 (April 2008): 667–70. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.667.

Der volle Inhalt der Quelle
Annotation:
The investigated ecological glasses with no toxic compounds, such as BaO, PbO, As2O3, As2O5, fluorine, CdS and CdSe in their composition are located in ternary and quaternary oxide systems: ZnO-SiO2-TiO2 and SiO2-R'2O-R''O-R'''O2, where R' is Na or K, R'' is Ca or Mg and R''' is Zr or Ti. The first system contains P2O5, ZnO and TiO2 in order to obtain opal glasses, without fluorine compounds. The second system replaces the barium oxide and lead oxide with potassium, magnesium, zirconium and titanium oxides, for materials like lead free crystals. The raw materials can be replaced by silicate or borosilicate glass waste. The advantages of borosilicate glass waste are: bringing valuable components into recipes (B2O3, CaO, Al2O3), saving raw materials and energy, creating an ecological environment The characteristic temperatures (vitreous transition point, low and high annealing points, softening point) and the thermal expansion coefficient of the glass are presented. The FTIR and Raman spectroscopy provided structural data, such as characteristic vibration maxima for silicon and titanium oxide, and revealed the role of zinc oxide in the vitreous network. The refraction index and UV-VIS transmission are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yadav, Avadhesh Kumar, und C. R. Gautam. „Barium Strontium Titanate Borosilicate Glass Ceramics as High Energy Density Capacitor“. Advanced Science Letters 20, Nr. 5 (01.05.2014): 1176–80. http://dx.doi.org/10.1166/asl.2014.5451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bootjomchai, Cherdsak, Jintana Laopaiboon, Chadet Yenchai und Raewat Laopaiboon. „Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses“. Radiation Physics and Chemistry 81, Nr. 7 (Juli 2012): 785–90. http://dx.doi.org/10.1016/j.radphyschem.2012.01.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mishra, R. K., V. Sudarsan, C. P. Kaushik, Kanwar Raj, S. K. Kulshreshtha und A. K. Tyagi. „Structural aspects of barium borosilicate glasses containing thorium and uranium oxides“. Journal of Nuclear Materials 359, Nr. 1-2 (Dezember 2006): 132–38. http://dx.doi.org/10.1016/j.jnucmat.2006.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ramkumar, Jayshree, S. Chandramouleeswaran, V. Sudarsan, R. K. Mishra, C. P. Kaushik, Kanwar Raj und A. K. Tyagi. „Barium borosilicate glass as a matrix for the uptake of dyes“. Journal of Hazardous Materials 172, Nr. 1 (Dezember 2009): 457–64. http://dx.doi.org/10.1016/j.jhazmat.2009.07.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pavlovskii, V. K., und Yu S. Sobolev. „Temperature dependence of corrosion of refractories in barium borosilicate glass melts“. Glass and Ceramics 49, Nr. 6 (Juni 1992): 280–82. http://dx.doi.org/10.1007/bf00677156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Mishra, R. K., R. Mishra, C. P. Kaushik, A. K. Tyagi, D. Das und Kanwar Raj. „Effect of ThO2 on ionic transport behavior of barium borosilicate glasses“. Journal of Nuclear Materials 392, Nr. 1 (Juli 2009): 1–5. http://dx.doi.org/10.1016/j.jnucmat.2009.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yadav, Avadhesh Kumar, C. R. Gautam und Prabhakar Singh. „Dielectric behavior of lanthanum added barium strontium titanate borosilicate glass ceramics“. Journal of Materials Science: Materials in Electronics 26, Nr. 7 (01.04.2015): 5001–8. http://dx.doi.org/10.1007/s10854-015-3013-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Dhara, Amrita, R. K. Mishra, R. Shukla, T. P. Valsala, V. Sudarsan, A. K. Tyagi und C. P. Kaushik. „A comparative study on the structural aspects of sodium borosilicate glasses and barium borosilicate glasses: Effect of Al2O3 addition“. Journal of Non-Crystalline Solids 447 (September 2016): 283–89. http://dx.doi.org/10.1016/j.jnoncrysol.2016.04.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Farzana, Rifat, Pranesh Dayal, Inna Karatchevtseva, Zaynab Aly und Daniel J. Gregg. „The incorporation of Li2SO4 into barium borosilicate glass for nuclear waste immobilisation“. Journal of Alloys and Compounds 897 (März 2022): 162746. http://dx.doi.org/10.1016/j.jallcom.2021.162746.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

MITSUHASHI, Masahiko, Seishiro OHYA, Shiro KARASAWA, Kenji AKIMOTO und Setsuo KODATO. „Emissivity Measurement of Barium Borosilicate Glass Film Formed by Pulsed Laser Deposition.“ SHINKU 40, Nr. 5 (1997): 460–63. http://dx.doi.org/10.3131/jvsj.40.460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Heath, Paul G., Claire L. Corkhill, Martin C. Stennett, Russell J. Hand, Kieran M. Whales und Neil C. Hyatt. „Immobilisation of Prototype Fast Reactor raffinate in a barium borosilicate glass matrix“. Journal of Nuclear Materials 508 (September 2018): 203–11. http://dx.doi.org/10.1016/j.jnucmat.2018.05.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Mishra, Raman K., Vasanthakumaran Sudarsan, Savita Jain, Chetan P. Kaushik, Rajesh K. Vatsa und Avesh K. Tyagi. „Structural and Luminescence Studies on Barium Sodium Borosilicate Glasses Containing Uranium Oxides“. Journal of the American Ceramic Society 97, Nr. 2 (13.12.2013): 427–31. http://dx.doi.org/10.1111/jace.12735.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hayashi, T., und W. G. Dorfeld. „Electrochemical study of As3+/As5+ equilibrium in a barium borosilicate glass melt“. Journal of Non-Crystalline Solids 177 (November 1994): 331–39. http://dx.doi.org/10.1016/0022-3093(94)90547-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Monteiro, Regina C. C., Andreia A. S. Lopes, Maria M. A. Lima, João P. Veiga, Rui J. C. Silva, Carlos J. Dias, Erika J. R. Davim und Maria H. V. Fernandes. „Sintering, Crystallization, and Dielectric Behavior of Barium Zinc Borosilicate Glasses-Effect of Barium Oxide Substitution for Zinc Oxide“. Journal of the American Ceramic Society 95, Nr. 10 (03.09.2012): 3144–50. http://dx.doi.org/10.1111/j.1551-2916.2012.05418.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ochiai, S., H. Okuda, S. Kimura, K. Morishita, M. Tanaka, M. Hojo und M. Sato. „Improvement of Young's modulus and tensile strength of polymer impregnation and pyrolysis processed SiC/SiC composite by improved continuity of matrix“. Journal of Materials Research 19, Nr. 8 (August 2004): 2377–88. http://dx.doi.org/10.1557/jmr.2004.0290.

Der volle Inhalt der Quelle
Annotation:
Influences of the continuity of the matrix on Young's modulus and tensile strength of unidirectional SiC/SiC mini-composite prepared by the polymer impregnation and pyrolysis method were studied experimentally by observation of appearance of matrix and tensile test and analytically by a shear lag–Monte Carlo simulation. The continuity of the matrix was improved by the addition of particles such as ZrSiO4, barium magnesium aluminosilicate, and Pyrex (borosilicate glass) into the matrix. The improved continuity of the matrix led to the increase in stress carrying capacity of the matrix and therefore to the increase in Young's modulus and tensile strength of the composite. Such a correlation between the continuity of the matrix and the property of the composite was verified numerically by the shear lag–Monte Carlo simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hsu, Jen-Hsien, Cheol-Woon Kim, Richard K. Brow, Joe Szabo, Ray Crouch und Rob Baird. „An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells“. Journal of Power Sources 270 (Dezember 2014): 14–20. http://dx.doi.org/10.1016/j.jpowsour.2014.07.088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kumar, Sumit, R. K. Mishra, B. S. Tomar, A. K. Tyagi, C. P. Kaushik, Kanwar Raj und V. K. Manchanda. „Heavy ion Rutherford backscattering spectrometry (HIRBS) study of barium diffusion in borosilicate glass“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, Nr. 4 (Februar 2008): 649–52. http://dx.doi.org/10.1016/j.nimb.2007.12.062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Laopaiboon, R., C. Bootjomchai, M. Chanphet und J. Laopaiboon. „Elastic properties investigation of gamma-radiated barium lead borosilicate glass using ultrasonic technique“. Annals of Nuclear Energy 38, Nr. 11 (November 2011): 2333–37. http://dx.doi.org/10.1016/j.anucene.2011.07.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Eremyashev, V. E., D. A. Zherebtsov, L. M. Osipova und M. V. Brazhnikov. „Effect of Calcium, Barium, and Strontium on the Thermal Properties of Borosilicate Glasses“. Glass and Ceramics 74, Nr. 9-10 (Januar 2018): 345–48. http://dx.doi.org/10.1007/s10717-018-9991-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lopes, A. A. S., R. C. C. Monteiro, R. S. Soares, M. M. R. A. Lima und M. H. V. Fernandes. „Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method“. Journal of Alloys and Compounds 591 (April 2014): 268–74. http://dx.doi.org/10.1016/j.jallcom.2013.12.086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

El-Alaily, N. A., E. M. Abou Hussein und F. M. Ezz Eldin. „Gamma Irradiation and Heat Treatment Effects on Barium Borosilicate Glasses Doped Titanium Oxide“. Journal of Inorganic and Organometallic Polymers and Materials 28, Nr. 6 (25.07.2018): 2662–76. http://dx.doi.org/10.1007/s10904-018-0934-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Khoeini, Mohammad, Alireza Kolahi und Saeed Hesaraki. „Mechanical properties, bioactivity and cell behavior of barium-containing calcium-phospho-alumino-borosilicate glass“. Ceramics International 48, Nr. 6 (März 2022): 7643–51. http://dx.doi.org/10.1016/j.ceramint.2021.11.309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhao, Peidong, Scott Kroeker und Jonathan F. Stebbins. „Non-bridging oxygen sites in barium borosilicate glasses: results from 11B and 17O NMR“. Journal of Non-Crystalline Solids 276, Nr. 1-3 (Oktober 2000): 122–31. http://dx.doi.org/10.1016/s0022-3093(00)00290-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Mishra, R. K., V. Sudarsan, C. P. Kaushik, Kanwar Raj, R. K. Vatsa, M. Body und A. K. Tyagi. „Effect of fluoride ion incorporation on the structural aspects of barium–sodium borosilicate glasses“. Journal of Non-Crystalline Solids 355, Nr. 7 (März 2009): 414–19. http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Evans, N. D., P. H. Imamura, J. Bentley und M. L. Mecartney. „Characterization of Intergranular Phases in Tetragonal and Cubic Yttria-Stabilized Zirconia“. Microscopy and Microanalysis 4, S2 (Juli 1998): 584–85. http://dx.doi.org/10.1017/s1431927600023047.

Der volle Inhalt der Quelle
Annotation:
Achieving superplasticity in fine-grained ceramics is a potential method to lower energy costs associated with ceramic manufacturing via net shape forming. Superplasticity is intrinsic in 3-mol%- yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP), and can be enhanced by addition of glass to form intergranular phases which are thought to both limit grain growth and promote grain boundary sliding during processing (sintering and hot isostatic pressing). This permits processing at lower temperatures. However, superplasticity has not been observed in 8-mol%-yttria-stabilized cubic zirconia (8Y-CSZ), ostensibly due to its larger grain size and high grain growth rates.3,4 As part of a larger study, high-spatial-resolution energy-dispersive X-ray spectrometry (EDS) has been performed on 3Y-TZP and 8Y-CSZ specimens doped with various glassy phases to characterize intergranular compositions.Zirconia powders were mixed with glass to produce specimens having either 1 wt % lithiumaluminum- silicate, 1 wt % barium-silicate, or 1 wt % borosilicate. Some specimens were prepared without added glass.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Çöpoğlu, Nurullah, Hatice Gökdemir, Tamer Cengiz und Buğra Çiçek. „Barium borosilicate glass coatings based on biomass for steel surfaces: Use of rice husk ash“. Ceramics International 48, Nr. 6 (März 2022): 8671–79. http://dx.doi.org/10.1016/j.ceramint.2021.12.078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mhareb, M. H. A., Muna Alqahtani, Y. S. M. Alajerami, Fatimh Alshahri, M. I. Sayyed, K. A. Mahmoud, Noha Saleh, N. Alonizan, M. S. Al-Buriahi und Kawa M. Kaky. „Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide“. Materials Chemistry and Physics 272 (November 2021): 125047. http://dx.doi.org/10.1016/j.matchemphys.2021.125047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Salinigopal, M. S., N. Gopakumar, P. S. Anjana und O. P. Pandey. „Rare earth added barium alumino borosilicate glass-ceramics as sealants in solid oxide fuel cells“. Journal of Non-Crystalline Solids 576 (Januar 2022): 121242. http://dx.doi.org/10.1016/j.jnoncrysol.2021.121242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sasmal, Nibedita, Mrinmoy Garai, Atiar Rahman Molla, Anal Tarafder, Shiv Prakash Singh und Basudeb Karmakar. „Effects of lanthanum oxide on the properties of barium-free alkaline-earth borosilicate sealant glass“. Journal of Non-Crystalline Solids 387 (März 2014): 62–70. http://dx.doi.org/10.1016/j.jnoncrysol.2013.12.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Li, Huidong, Lang Wu, Dong Xu, Xin Wang, Yuancheng Teng und Yuxiang Li. „Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases“. Journal of Nuclear Materials 466 (November 2015): 484–90. http://dx.doi.org/10.1016/j.jnucmat.2015.08.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wang, Xin, Lang Wu, Huidong Li, Jizong Xiao, Xin Cai und Yuancheng Teng. „Preparation and characterization of SO3-doped barium borosilicate glass-ceramics containing zirconolite and barite phases“. Ceramics International 43, Nr. 1 (Januar 2017): 534–39. http://dx.doi.org/10.1016/j.ceramint.2016.09.190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Yadav, Avadhesh Kumar, und C. R. Gautam. „Synthesis, Structural and Optical Studies of Barium Strontium Titanate Borosilicate Glasses Doped with Ferric Oxide“. Spectroscopy Letters 48, Nr. 7 (03.02.2015): 514–20. http://dx.doi.org/10.1080/00387010.2014.920886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie