Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Boolean valued models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Boolean valued models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Boolean valued models"
Wu, Xinhe. „Boolean-Valued Models and Their Applications“. Bulletin of Symbolic Logic 28, Nr. 4 (Dezember 2022): 533. http://dx.doi.org/10.1017/bsl.2022.34.
Der volle Inhalt der QuelleDahn, Bernd I. „Boolean valued models and incomplete specifications“. Journal of Logic Programming 12, Nr. 3 (Februar 1992): 225–36. http://dx.doi.org/10.1016/0743-1066(92)90025-x.
Der volle Inhalt der QuelleOZAWA, MASANAO. „ORTHOMODULAR-VALUED MODELS FOR QUANTUM SET THEORY“. Review of Symbolic Logic 10, Nr. 4 (05.06.2017): 782–807. http://dx.doi.org/10.1017/s1755020317000120.
Der volle Inhalt der QuelleHansen, Lars. „On an algebra of lattice-valued logic“. Journal of Symbolic Logic 70, Nr. 1 (März 2005): 282–318. http://dx.doi.org/10.2178/jsl/1107298521.
Der volle Inhalt der QuelleHernandez, E. G. „Boolean-Valued Models of Set Theory with Automorphisms“. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, Nr. 7-9 (1986): 117–30. http://dx.doi.org/10.1002/malq.19860320704.
Der volle Inhalt der QuelleDobrić, Vladimir, Pavle Milošević, Aleksandar Rakićević, Bratislav Petrović und Ana Poledica. „Interpolative Boolean Networks“. Complexity 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/2647164.
Der volle Inhalt der QuelleButz, C., und I. Moerdijk. „An elementary definability theorem for first order logic“. Journal of Symbolic Logic 64, Nr. 3 (September 1999): 1028–36. http://dx.doi.org/10.2307/2586617.
Der volle Inhalt der QuelleMolchanov, I. S. „Set-Valued Estimators for Mean Bodies Related to Boolean Models“. Statistics 28, Nr. 1 (Januar 1996): 43–56. http://dx.doi.org/10.1080/02331889708802547.
Der volle Inhalt der QuelleTrinh, Van-Giang, Belaid Benhamou, Thomas Henzinger und Samuel Pastva. „Trap spaces of multi-valued networks: definition, computation, and applications“. Bioinformatics 39, Supplement_1 (01.06.2023): i513—i522. http://dx.doi.org/10.1093/bioinformatics/btad262.
Der volle Inhalt der QuellePantle, Ursa, Volker Schmidt und Evgueni Spodarev. „Central limit theorems for functionals of stationary germ-grain models“. Advances in Applied Probability 38, Nr. 1 (März 2006): 76–94. http://dx.doi.org/10.1239/aap/1143936141.
Der volle Inhalt der QuelleDissertationen zum Thema "Boolean valued models"
Santiago, Suárez Juan Manuel. „Infinitary logics and forcing“. Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Der volle Inhalt der QuelleThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Bücher zum Thema "Boolean valued models"
L, Bell J. Set theory: Boolean-valued models and independence proofs. 3. Aufl. Oxford [Oxfordshire]: Clarendon Press, 2011.
Den vollen Inhalt der Quelle findenBell, J. L. Boolean-valued models and independence proofs in set theory. 2. Aufl. Oxford: Clarendon, 1985.
Den vollen Inhalt der Quelle findenMakkai, Mihály. Models, logics, and higher-dimensional categories: A tribute to the work of Mihaly Makkai. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenButton, Tim, und Sean Walsh. Boolean-valued structures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0013.
Der volle Inhalt der QuelleBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs. Oxford University Press, 2005.
Den vollen Inhalt der Quelle findenBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs. Ebsco Publishing, 2005.
Den vollen Inhalt der Quelle findenBoolean-valued models and independence proofs in set theory. 2. Aufl. Oxford [Oxfordshire]: Oxford University Press, 1985.
Den vollen Inhalt der Quelle findenSimplified Independence Proofs: Boolean Valued Models of Set Theory. Elsevier Science & Technology Books, 2011.
Den vollen Inhalt der Quelle findenBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs (Oxford Logic Guides). Oxford University Press, USA, 2005.
Den vollen Inhalt der Quelle findenGeometric Set Theory. American Mathematical Society, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Boolean valued models"
Viale, Matteo. „Boolean Valued Models“. In UNITEXT, 81–105. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71660-7_6.
Der volle Inhalt der QuelleDahn, Bernd I. „Boolean valued models and incomplete specifications“. In Algebraic and Logic Programming, 119–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-50667-5_63.
Der volle Inhalt der QuellePierobon, Moreno, und Matteo Viale. „Boolean Valued Models, Sheafifications, and Boolean Ultrapowers of Tychonoff Spaces“. In Chapman Mathematical Notes, 355–90. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-68934-5_14.
Der volle Inhalt der Quelleda Costa, N. C. A., und F. A. Doria. „Structures, Suppes Predicates, and Boolean-Valued Models in Physics“. In Philosophical Logic and Logical Philosophy, 91–118. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8678-8_7.
Der volle Inhalt der QuelleEckert, Daniel, und Frederik Herzberg. „The Problem of Judgment Aggregation in the Framework of Boolean-Valued Models“. In Lecture Notes in Computer Science, 138–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09764-0_9.
Der volle Inhalt der QuelleYang, Jiong, und Kuldeep S. Meel. „Rounding Meets Approximate Model Counting“. In Computer Aided Verification, 132–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_7.
Der volle Inhalt der QuelleTan, Jianping, Kunpeng Han, Yao Liu, Xiaoxuan Huang und Erte Lin. „Optimization of Damping Groove Parameters of Swashplate Plunger Pump Based on CATIA Secondary Development“. In Lecture Notes in Mechanical Engineering, 925–39. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7887-4_81.
Der volle Inhalt der QuelleDamonte, Alessia. „Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis“. In Texts in Quantitative Political Analysis, 153–86. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12982-7_7.
Der volle Inhalt der Quelle„Forcing and Boolean-valued models“. In Multiple Forcing, 2–6. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511721168.002.
Der volle Inhalt der QuelleDahn, Bernd I. „BOOLEAN VALUED MODELS AND INCOMPLETE SPECIFICATIONS“. In Algebraic and Logic Programming, 119–26. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112620267-012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Boolean valued models"
Figallo-Orellano, Aldo, und Juan Sebastián Slagter. „Models for da Costa’s paraconsistent set theory“. In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wbl.2020.11456.
Der volle Inhalt der QuelleShcherba, E. V. „Boolean-valued models of telecommunication systems in some problems of network security“. In 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2015. http://dx.doi.org/10.1109/sibcon.2015.7147292.
Der volle Inhalt der QuelleLiu, Han, Xiangnan He, Fuli Feng, Liqiang Nie, Rui Liu und Hanwang Zhang. „Discrete Factorization Machines for Fast Feature-based Recommendation“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/479.
Der volle Inhalt der QuelleKolb, Samuel, Martin Mladenov, Scott Sanner, Vaishak Belle und Kristian Kersting. „Efficient Symbolic Integration for Probabilistic Inference“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/698.
Der volle Inhalt der QuelleBouskela, Daniel, Lena Buffoni, Audrey Jardin, Vince Molnair, Adrian Pop und Armin Zavada. „The Common Requirement Modeling Language“. In 15th International Modelica Conference 2023, Aachen, October 9-11. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp204497.
Der volle Inhalt der Quellede Colnet, Alexis, und Stefan Mengel. „A Compilation of Succinctness Results for Arithmetic Circuits“. In 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/20.
Der volle Inhalt der QuelleShcherba, E. V., und M. V. Shcherba. „Finding the Optimal Paths in a Boolean-Valued Network“. In 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2019. http://dx.doi.org/10.1109/fareastcon.2019.8934413.
Der volle Inhalt der QuelleHarder, Hans, Simon Jantsch, Christel Baier und Clemens Dubslaff. „A Unifying Formal Approach to Importance Values in Boolean Functions“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/304.
Der volle Inhalt der QuelleYakhyaeva, Gulnara. „Application of Boolean Valued and Fuzzy Model Theory for Knowledge Base Development“. In 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2019. http://dx.doi.org/10.1109/sibircon48586.2019.8958245.
Der volle Inhalt der QuellePerhac, Jan, und Zuzana Bilanova. „Categorical Model of Functional Language with Natural Numbers and Boolean Values“. In 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). IEEE, 2020. http://dx.doi.org/10.1109/csit49958.2020.9322039.
Der volle Inhalt der Quelle