Auswahl der wissenschaftlichen Literatur zum Thema „Bone Physiology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bone Physiology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Bone Physiology":

1

Chowdhury, Biplob. „Bone Remodeling: The Molecular Mechanism of Bone Physiology- A Review“. International Journal of Scientific Research 3, Nr. 4 (01.06.2012): 305–6. http://dx.doi.org/10.15373/22778179/apr2014/105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Alexandre, Christian. „Bone physiology“. Current Opinion in Rheumatology 3, Nr. 3 (Juni 1991): 452–56. http://dx.doi.org/10.1097/00002281-199106000-00018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Morone, Michael A. „Bone physiology and bone healing“. Neurosurgical Focus 13, Nr. 6 (Dezember 2002): 1. http://dx.doi.org/10.3171/foc.2002.13.6.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Martin, T. J., Kong Wah Ng und Tatsuo Suda. „Bone Cell Physiology“. Endocrinology and Metabolism Clinics of North America 18, Nr. 4 (Dezember 1989): 833–58. http://dx.doi.org/10.1016/s0889-8529(18)30346-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Buck, Donald W., und Gregory A. Dumanian. „Bone Biology and Physiology“. Plastic and Reconstructive Surgery 129, Nr. 6 (Juni 2012): 950e—956e. http://dx.doi.org/10.1097/prs.0b013e31824ec354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Buck, Donald W., und Gregory A. Dumanian. „Bone Biology and Physiology“. Plastic and Reconstructive Surgery 129, Nr. 6 (Juni 2012): 1314–20. http://dx.doi.org/10.1097/prs.0b013e31824eca94.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Clarke, Bart L., und Sundeep Khosla. „Physiology of Bone Loss“. Radiologic Clinics of North America 48, Nr. 3 (Mai 2010): 483–95. http://dx.doi.org/10.1016/j.rcl.2010.02.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

El-Farrash, Rania Ali, Radwa Hassan Ali und Noha Mokhtar Barakat. „Post-natal bone physiology“. Seminars in Fetal and Neonatal Medicine 25, Nr. 1 (Februar 2020): 101077. http://dx.doi.org/10.1016/j.siny.2019.101077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DeLacure, Mark D. „Physiology Of Bone Healing And Bone Grafts“. Otolaryngologic Clinics of North America 27, Nr. 5 (Oktober 1994): 859–74. http://dx.doi.org/10.1016/s0030-6665(20)30613-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Doherty, Alison H., Cameron K. Ghalambor und Seth W. Donahue. „Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments“. Physiology 30, Nr. 1 (Januar 2015): 17–29. http://dx.doi.org/10.1152/physiol.00022.2014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Bone evolved to serve many mechanical and physiological functions. Osteocytes and bone remodeling first appeared in the dermal skeleton of fish, and subsequently adapted to various challenges in terrestrial animals occupying diverse environments. This review discusses the physiology of bone and its role in mechanical and calcium homeostases from an evolutionary perspective. We review how bone physiology responds to changing environments and the adaptations to unique and extreme physiological conditions.

Dissertationen zum Thema "Bone Physiology":

1

Shum, Laura C. „Mitochondrial Metabolism in Bone Physiology and Pathology“. Thesis, University of Rochester, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10792056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Worldwide, 1 in 3 women and 1 in 5 men over age 50 will experience fractures due to a decline in bone quality. Elucidating the mechanisms for declining bone quality can lead to better therapeutics. A vital, yet overlooked aspect of bone health is the role of mitochondrial metabolism in both bone physiology and pathology. We have found that the ability of stem cells to differentiate into bone forming osteoblasts is sensitive to mitochondrial dysfunction, and therefore preserving mitochondrial function is essential to maintaining bone quality. In human patient samples, we found that osteogenesis following a spinal fusion is correlated with mitochondrial function of bone marrow stem cells. While the decline of bone with aging has been well studied, we were the first to find a concomitant decline in mitochondrial function in bone tissue. The most common mechanism of mitochondrial dysfunction is opening of the mitochondrial permeability transition pore (MPTP), a non-selective proteinaceous pore on the inner mitochondrial membrane, positively regulated by the protein cyclophilin D (CypD). Our CypD knockout mouse model has protected mitochondrial function in bone tissue and no decline in bone quality during aging. While we did show that protecting mitochondrial function is beneficial to age-associated bone loss, our ovariectomy model in the CypD knockout mouse did not show any protection. Thus, age-related and estrogen-related bone loss are likely controlled through different mechanisms. Overall, this work has shown the importance of mitochondrial metabolism in bone health and should be further explored as a new avenue for therapeutic interventions.

2

Shah, Mittal. „The role of 5' adenosine monophosphate-activated protein kinase (AMPK) in bone physiology“. Thesis, Royal Veterinary College (University of London), 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Blackwell, Penelope J. „Bone turnover in hyperprolactinaemic states“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Charras, Guillaume. „Cellular mechano-transduction in bone“. Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269783.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wakley, Glenn Keith. „Space flight and bone“. Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bannerman, Alistair L. „Imaging the development of a bone-to-bone ligament construct“. Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6425/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ligament injuries are commonplace, with poor native healing leaving injury sites exposed to instability and further damage. A number of surgical methods have been established for reconstruction using a range of materials, but these have a high failure rate and a number of undesirable side-effects. Much recent work has been focused on the development of tissue engineered ligament grafts. One of the major challenges for this is the formation of an effective ligament-bone interface. In native tissue a multi-phase interface enables smooth transfer of forces between the mechanically mismatched bone and ligament tissue, however this has proved hard to replicate. Previous work has developed a bone-bone ligament construct model intended to emulate the native interface through formation of a mineralised region by soluble cement anchors. Development and optimisation of the model has seen an increasing mechanical strength, but the mechanisms involved are poorly understood. This study investigates the development of the ligament construct through the use of multiple complimentary imaging techniques to provide information on the biological, chemical, and topological development of the construct as it forms from initially homogeneous and separate materials to a complex non-homogeneous system.
7

New, Susan A. „An epidemiological investigation into the influence of nutritional factors on bone mineral density and bone metabolism“. Thesis, University of Aberdeen, 1995. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A food frequency questionnaire (FFQ) was developed for a study investigating dietary influences on bone mineral density (BMD) and bone metabolism (BM). The percentage contribution of food groups to nutrients of interest were identified from 20 7d weighed records (WR) and incorporated to form a 98 food item FFQ. The FFQ was validated against a further 20 7d WR, and the short (6 weeks) and long-term (1 year) reproducibility tested. Mean nutrient intakes by 7d WR and FFQ, and initial and repeat FFQ were similar and cross-classification showed few women to be grossly misclassified. Information was also collected on past intakes of milk and fruit, weight, height, smoking, social class and physical activity. The effect of dietary intake on BMD was investigated in 994 healthy premenopausal women aged 45-49 years. BMD was measured using dual energy X-ray absorptiometry at the lumbar spine (LS) and hip (femoral neck [FN], trochanter [FT], Wards [FW]). Nutrient intakes were adjusted for energy intake by calculating the residual from regression analysis. Positive relationships were found between BMD and intakes of Mg, K, Zn and vitamin C, remaining significant after adjustment for confounding variables. LS BMD was lower in women who reported a low intake of milk and fruit in their childhood and early adulthood. The influence of dietary intake on BM was assessed in 62 healthy peri-menopausal women aged 45-55 years. Bone resorption was determined by urinary excretion of pyridinoline (Pyd) and deoxypyridinoline (Dpd) using reversed-phase HPLC, and bone formation by serum osteocalcin (OC) using an ELISA. Energy adjusted intakes of K, Mg, carotene and vitamin C were negatively associated with Pyd and Dpd concentrations, remaining significant after appropriate adjustment including menopausal status. OC was positively associated with energy intake and weight. Twenty-six women were measured after one year, but no relationships were found between changes in bone mass and baseline bone metabolism markers or dietary intake. Results suggest there is a higher bone mass and lower bone resorption in women with high intakes of K, Mg, carotene and vitamin C, independent of confounding factors. Positive effects on acid-base balance, Mg deficiency or the role of vitamin C in collagen liydroxylation may provide some explanations for these findings.
8

PAOLETTI, Nicola. „Formal Computational Modelling of Bone Physiology and Disease Processes“. Doctoral thesis, Università degli Studi di Camerino, 2014. http://hdl.handle.net/11581/401835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis addresses the definition and the application of formal techniques in the field of Computational Systems Biology, with particular focus on bone remodelling (BR), the cellular process of bone renewal, and on the analysis and control of disease processes. Firstly, we study the multiscale and spatial mechanisms that connects disruptions at the molecular signalling level, to osteoporosis and other diseases characterized by low bone mass and structural weakening at the tissue level. We define a modelling framework based on a formal specification language which extends the Shape Calculus, a process algebra with spatial and geometrical primitives. The executable side is obtained by encoding the specification into an agent-based model, where agents are enriched with stochastic actions and perception. This framework is used to define a novel spatial and individual-based model of bone remodelling, parametrized in order to reproduce both healthy and osteoporotic conditions, and to analyse how the disposition of bone cells affects bone microstructure at the tissue level. Secondly, we propose a methodological study aiming at evaluating and comparing different models of bone remodelling and different techniques for the analysis of bone diseases and of stabilization and homeostasis-related properties. We consider a non-linear ODE model, over which we perform simulation and sensitivity analysis; a stochastic model on which we employ probabilistic model checking; and a hybrid piecewise-multiaffine approximation of the ODEs, supporting model checking and LTL-based parameter synthesis. We extend the model in order to describe osteoporosis and osteomyelitis (a bone infection) and we show how quantitative verification methods could provide clinically meaningful diagnostic estimators. Thirdly, we investigate the use of formal languages and hybrid techniques in the modelling of disease processes and in the synthesis of treatment strategies. In particular, hybrid models allow us to describe the disease dynamics in a continuous fashion, while the scheduling of multiple drugs discretely. We define a process-algebraic language for specifying general disease processes and treatments, called D-CGF (an extension to the CGF process algebra), from which multiple semantics can be derived: stochastic hybrid automata and hybrid dynamical systems. Then, hybrid non-linear control is employed to compute the optimal scheduling of multiple therapies. The approach is applied to an epidemic model of the H1N1 influenza, where we derive the optimal combination of vaccination and antiviral treatments.
9

Breckon, Anke. „An investigation of the morphological and mechanical properties of cancellous bone in rheumatoid arthritis and osteoarthritis of the hip“. Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/26328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Oreffo, R. O. C. „Vitamin A and bone“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Bone Physiology":

1

Mundy, Gregory R., und T. John Martin. Physiology and Pharmacology of Bone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77991-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

-B, Abou-Samra A., Mundy Gregory R und Martin T. John, Hrsg. Physiology and pharmacology of bone. Berlin: Springer-Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Glorieux, Francis H., John M. Pettifor und Harald Jüppner. Pediatric bone: Biology & diseases. 2. Aufl. Amsterdam: Elsevier/Academic Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Maxine, Gowen, Hrsg. Cytokines and bone metabolism. Boca Raton, Fla: CRC Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hong-wen, Deng, und Liu Yao-zhong, Hrsg. Current topics in bone biology. Singapore: World Scientific, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

NATO Advanced Study Institute on Advances in Bone Regulatory Factors: Morphology, Biochemistry, Physiology, and Pharmacology (1989 Erice, Italy). Bone regulatory factors: Morphology, biochemistry, physiology, and pharmacology. New York: Plenum Press, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mundy, Gregory R. Anatomy, physiology, and function of bone. Kalamazoo: Upjohn, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1934-, Cowin Stephen C., Hrsg. Bone mechanics. Boca Raton, Fla: CTC Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bilezikian, John P. Principles of bone biology. 3. Aufl. Amsterdam: Elsevier, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

J, Favus Murray, und Christakos Sylvia, Hrsg. Osteoporosis: Fundamentals of clinical practice. Phildalephia: Lippincott-Raven, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Bone Physiology":

1

Raisz, Lawrence G. „Bone Physiology“. In Nutrition and Bone Health, 43–62. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-740-6_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Minisold, Salvatore, und Lorraine A. Fitzpatrick. „Bone Physiology“. In Developmental Endocrinology, 193–216. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-59259-156-5_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lafage-Proust, MH. „Bone Developmental Physiology“. In Pediatric Nephrology, 279–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43596-0_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lafage-Proust, MH. „Bone Developmental Physiology“. In Pediatric Nephrology, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27843-3_9-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wolde-Semait, Henock T., und Daniel Komlos. „Normal Bone Physiology“. In Vertebral Compression Fractures in Osteoporotic and Pathologic Bone, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33861-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kelly, Ann Marie, Nikolaos K. Paschos, Dimitrios Giotis und John D. Kelly. „Bone Tissue Physiology“. In General Orthopaedics and Basic Science, 53–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92193-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Grabowski, Peter. „Physiology of Bone“. In Calcium and Bone Disorders in Children and Adolescents, 32–48. Basel: KARGER, 2009. http://dx.doi.org/10.1159/000223687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tzelepi, Vassiliki, Athanassios C. Tsamandas, Vassiliki Zolota und Chrisoula D. Scopa. „Bone Anatomy, Physiology and Function“. In Bone Metastases, 3–30. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9819-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, Shangbin, und Alexey Zaikin. „Bone and Body Mechanics“. In Quantitative Physiology, 73–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4033-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Eriksen, E. F., A. Vesterby, M. Kassem, F. Melsen und L. Mosekilde. „Bone Remodeling and Bone Structure“. In Physiology and Pharmacology of Bone, 67–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77991-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Bone Physiology":

1

Alexander, Benjamin E., Tyrone L. Daulton, Guy M. Genin, Jill D. Pasteris, Brigitte Wopenka und Stavros Thomopoulos. „The Nano-Physiology of Mineralized Tissues“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The nanostructures of bone and partially mineralized tissues determine the toughness (Buehler, 2007) and stiffness (Genin et al., submitted) of these tissues. In the attachment of tendon to bone, tissue compositions and possibly nanostructures vary spatially in concert with microscopic and macroscopic variations in tissue shape, presumably to improve load transfer from tendon to bone (Thomopoulos et al., 2006). We hypothesize that undesirable stress concentrations resulting from a failure to recreate the details of this spatial grading following surgical healing may underlie the low levels of success of surgeries to repair tendon-to-bone attachments such as the rotator cuff (Galatz, 2001). Therefore, a detailed understanding of the gradients in composition and structure of the natural tendon-to-bone attachment as well as an understanding of the mechanisms of their development are critical for our efforts to synthesize surgical grafts that augment tendon-to-bone healing. As a first step towards understanding the nanometer-scale details of the tendon-to-bone attachment, we studied the nanostructure of bone using steric modeling and scanning transmission electron microscopy (STEM).
2

Febrina Pargaputri, Agni, und Noengki Prameswari. „The Role of Osteocytes in Alveolar Bone During Tooth Movement“. In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007331700100014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stenfelt, Stefan. „OVERVIEW AND RECENT ADVANCES IN BONE CONDUCTION PHYSIOLOGY“. In Proceedings of the 4th International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708694_0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Indah Wiyasihati, Sundari, Bambang Purwanto und Agus Hariyanto. „Bone Age Estimates the Onset of the Adolescent Growth Spurt Among Male Basketball Players“. In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007337502770279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mehta, Shreefal S., Peter P. Antich, Billy Smith, Matthew A. Lewis und Edmond Richer. „Bone Elastometric Measurements by Ultrasound Reflectometry: Observations on Physiology and Functional Organization of Bone“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Bone mechanical properties are strongly dependent on orientation and optimally adapted to the directional stresses induced by load bearing and muscular activity. Spatial and directional homogeneity and a slow rate of change of material mechanical properties are commonly assumed in the literature. The assumptions are based on limitations of widespread diagnostic techniques but are contradicted by results from several established techniques, including ultrasound reflectometry. A device based on the ultrasound reflectometry technique measures the mechanical elasticity of bone noninvasively at multiple sites and orientations, making it possible to carry out longitudinal studies at any chosen location in vivo. In vivo elastometric measurements over the length of a tibia were obtained with this device, demonstrating quantitatively for the first time the spatial and directional heterogeneity of bone material properties in vivo. Clinical observations made on two subjects also suggest that bone does exhibit rapid changes in response to altered activity levels.
6

Qin, Yi-Xian, und Hoyan Lam. „Bone Formation and Inhibition of Bone Loss by Dynamic Muscle Stimulation With Altered Interstitial Fluid Pressure“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Tissue-level mechanisms and functions, including bone strain and muscle, are the potential key players in bone physiology and adaptation [1,2,3]. However, the mechanisms are not yet fully understood. Exercise such as muscle contraction appears to increase blood flow to the skeletal tissues, i.e., bone and muscle. These evidences imply that bone fluid flow induced by muscle dynamics may be an important role in regulating fluid flow through coupling of muscle and bone via microvascular system.
7

Uddin, Sardar M. Zia, und Yi-Xian Qin. „Anabolic Effects of Ultrasound as Countermeasures of Simulated Microgravity in In-Vitro and In-Vivo Functional Disuse Models“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Microgravity (MG) during space flight has been known to cause adverse effect on bone quality. Data collected from studies done on spaceflights show loss of 1–1.6% bone mineral density (BMD) per space-flight-month[1]. Most BMD has been recorded in load-bearing bones [2]. Some studies has considered using drugs and different growth factors to maintain bone mass in microgravity conditions but it can be too expensive to maintain over longer periods of time besides the systematic effects of such treatments [3]. Considering the effects of microgravity are partially attributed to lack of mechanical force on bone tissue, which alters gene expression, reduction in transcription factors and growth factors. Furthermore, lack of gravity effects cell growth, proliferation, differentiation, cytoskeleton polymerization and cellular morphology [4, 5]. Thus to reverse these adverse effects on bone physiology, it is important to provide cells with mechanical stimulus which can provide essential mechanical signal for cells to counter the effects of microgravity. Ultrasound acoustic vibrations can be readily applied in, in vivo and human studies and has shown anabolic effects on osteopenic bone tissue [6]. Furthermore, ultrasound is a non-invasive and more target specific treatment relative to cyclic strain and vibration. The objective of this study is to see effects of low intensity pulsed ultrasound (LIPUS) on disused bone model and osteogenic activity of osteoblast cells cultures in simulated microgravity. This will help us understand that effects of ultrasound on microgravity and mechanotransduction pathway responsible for anabolic effect on bone cells.
8

Cole, Tanya G., Linda Shackelford, Chris A. Miller und J. Fernando Figueroa. „Instrumentation of Horizontal Exercise Machine“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Bed rest studies provide an opportunity to conduct ground-based studies of the physiological changes which occur on orbit. Astronauts are known to lose muscle and bone mass during space flights, and effective countermeasures are being sought. The muscle loss is extensive, even for short duration missions, but it is fairly easily regained upon return to the earth’s gravity. Bone loss, on the other hand, is a slower process. The effects are long lasting, and significant loss from a long duration mission may cause fracture when the body is subjected to the sometimes rigorous forces of gravitational environments. For this reason, studies are being done at NASA’s Johnson Space Center Bone and Mineral Physiology Laboratory on heavy resistive exercises that decrease or prevent loss of bone mineral density (BMD) in bed rest subjects.
9

Zhang, Dajun, Sheldon Weinbaum und Stephen C. Cowin. „Electrical Signal Transmission in a Bone Cell Network: The Influence of a Discrete Gap Junction“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Live bone is a very dynamic tissue under constant remodeling in response to the mechanical loading it sustains. However, the exact load-sensing mechanism of bone tissue is not yet clear. Recent studies suggest that the electrical aspect of bone physiology, especially the streaming potential, may play an important role in relaying the mechanical signal to the effector bone cells in bone remodeling [1] [2] [3]. In this paper, we use cable theory to calculate the intracellular potential and current in the bone cell network induced by the extracellular strain generated streaming potentials (SGPs). As an extension to our earlier paper on this subject, Zhang et al. [5], we focus our attention on the following five aspects: <1> influence of the axisymmetric, cylindrical geometry of the osteon on the SGP calculation; <2> influence of one discrete gap junction in a cellular cable; <3> influence of a range of the membrane resistance (hence the membrane time constant); <4> influence of the extracellular glycocalyx (GAG) fiber matrix in the lacunae-canaliculi space on the SGP calculation; <5> influence of a range of the membrane leakage area of a resting osteoblast as one end of the cellular cable.
10

Moissenet, Florent, Laurence Cheze und Raphaël Dumas. „Simultaneous Prediction of Musculo-Tendon, Joint Contact, Ligament and Bone Forces in the Lower Limb During Gait Using a One-Step Static Optimisation Procedure“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Instrumented prostheses, by measuring joint contact forces during a movement, give nowadays a unique opportunity to validate the ability of musculo-skeletal models in predicting internal forces. In this study, a rigid multi-body musculo-skeletal model, allowing computing the musculo-tendon, joint contact, ligament and bone forces all together by static optimisation, using a weighted criterion, is presented. The results show that the musculo-tendon forces are generally in accordance with the envelopes of the main peaks of the subject’s EMG signals and that the amplitudes and patterns of the predicted joint contact, ligament and bone forces are in a good agreement with the measurements and with the literature. By allowing the introduction of other forces than the musculo-tendon forces in the static optimisation, this study opens new horizons in order to better model the human physiology (e.g., joint pain).

Zur Bibliographie