Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bond forming“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bond forming" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bond forming"
Dyball, H. „Forming a bond“. Electronics Letters 46, Nr. 14 (2010): 962. http://dx.doi.org/10.1049/el.2010.9086.
Der volle Inhalt der QuelleDay, Lin. „Forming a loving bond“. Early Years Educator 10, Nr. 2 (Juni 2008): 32–34. http://dx.doi.org/10.12968/eyed.2008.10.2.29168.
Der volle Inhalt der QuelleMague, Joel T., Alaa A. M. Abdel-Aziz, Adel S. El-Azab und Amer M. Alanazi. „1-Acetyl-5-methoxy-4-(phenylsulfanyl)imidazolidin-2-one“. Acta Crystallographica Section E Structure Reports Online 70, Nr. 2 (15.01.2014): o145—o146. http://dx.doi.org/10.1107/s1600536814000117.
Der volle Inhalt der QuelleFujii, Isao. „Crystal structure of (S)-2-amino-2-methylsuccinic acid“. Acta Crystallographica Section E Crystallographic Communications 71, Nr. 10 (12.09.2015): o731—o732. http://dx.doi.org/10.1107/s2056989015016709.
Der volle Inhalt der QuelleGreen, Nicholas J., und Michael S. Sherburn. „Multi-Bond Forming Processes in Efficient Synthesis“. Australian Journal of Chemistry 66, Nr. 3 (2013): 267. http://dx.doi.org/10.1071/ch13003.
Der volle Inhalt der QuelleGagné, Olivier Charles, Patrick H. J. Mercier und Frank Christopher Hawthorne. „A priori bond-valence and bond-length calculations in rock-forming minerals“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 74, Nr. 6 (01.12.2018): 470–82. http://dx.doi.org/10.1107/s2052520618010442.
Der volle Inhalt der QuelleReardon-Robinson, Melissa E., und Hung Ton-That. „Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria“. Journal of Bacteriology 198, Nr. 5 (07.12.2015): 746–54. http://dx.doi.org/10.1128/jb.00769-15.
Der volle Inhalt der QuelleMoriguchi, Tetsuji, Venkataprasad Jalli, Suvratha Krishnamurthy, Akihiko Tsuge und Kenji Yoza. „Crystal structure of ethyl 2-(2-{1-[N-(4-bromophenyl)-2-oxo-2-phenylacetamido]-2-tert-butylamino-2-oxoethyl}-1H-pyrrol-1-yl)acetate“. Acta Crystallographica Section E Crystallographic Communications 71, Nr. 12 (01.12.2015): o1049—o1050. http://dx.doi.org/10.1107/s2056989015023592.
Der volle Inhalt der QuelleCurtis, Richard, R. Omar, J. Bahra, M. Ditta, A. Chotai und Lucy DiSilvio. „Superplastic Prosthetic Forming - In Vitro Response“. Key Engineering Materials 433 (März 2010): 31–39. http://dx.doi.org/10.4028/www.scientific.net/kem.433.31.
Der volle Inhalt der QuelleBegum, M. S., M. B. H. Howlader, M. C. Sheikh, R. Miyatake und E. Zangrando. „Crystal structure ofS-hexyl (E)-3-(2-hydroxybenzylidene)dithiocarbazate“. Acta Crystallographica Section E Crystallographic Communications 72, Nr. 3 (06.02.2016): 290–92. http://dx.doi.org/10.1107/s2056989016001857.
Der volle Inhalt der QuelleDissertationen zum Thema "Bond forming"
Hoskins, Travis Justin Christopher. „Carbon-carbon bond forming reactions“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29769.
Der volle Inhalt der QuelleCommittee Chair: Dr. Christopher Jones; Committee Co-Chair: Dr. Pradeep Agrawal; Committee Member: Dr. Sujit Banerjee; Committee Member: Dr. Tom Fuller. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Buzzetti, Luca. „Photochemical Strategies for Carbon–Carbon Bond Forming Processes“. Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/668971.
Der volle Inhalt der QuelleLa capacidad de generar intermedios radicalarios, bajo condiciones suaves, ha llevado al emergente campo de la catálisis fotoredox al desarrollo de nuevas transformaciones. Tradicionalmente, esta se basa en el uso de un fotocatalizador, que absorbe eficientemente luz e induce una transferencia simple de electrones (SET). Sin embargo, la reactividad química de las moléculas excitadas electrónicamente difiere fundamentalmente de las que se encuentran en su estado fundamental. Una molécula en estado excitado es a la vez una mejor donante y aceptora de electrones que en su estado fundamental y se comporta respectivamente como una mejor reductora y una mejor oxidante. El principal objetivo científico de esta tesis doctoral ha sido investigar y comprender la reactividad del estado excitado de algunas moléculas orgánicas para desarrollar nuevos procesos fotoquímicos de formación de enlaces C-C. Para lograr este objetivo, se han combinado diferentes herramientas de la química orgánica. En los primeros proyectos (discutidos en los Capítulos III y IV), la fusión de la organocatálisis y la fotoquímica han permitido la funcionalización asimétrica directa en la posición β de enales, desencadenada por la excitación con luz visible de sales de iminio quirales formadas in situ. En la segunda parte de estos estudios doctorales (discutido en el Capítulo V), se ha explotado las propiedades del estado excitado de 4-alquil-1,4-dihidropiridinas (alquil-DHP) en combinación con la catálisis de metales de transición para el desarrollo de catalizadores de níquel en reacciones radicalarias de acoplamiento cruzado.
The emerging field of photoredox catalysis has led to the development of new transformations due to the ability to generate radical intermediates under mild conditions. Traditionally, this relies on the use of a photocatalyst, which efficiently absorbs light and induces a single electron transfer (SET). However, the chemical reactivity of electronically excited molecules differs fundamentally from that in the ground state. An excited-state molecule is both a better electron donor and a better electron acceptor than in the ground state and behaves respectively as a better reductant and a better oxidant. The main scientific objective of this doctoral research was to investigate and understand the excited-state reactivity of some organic molecules to develop novel photochemical C–C bond-forming processes. In order to achieve this goal, different tools of organic chemistry were combined. In the first projects (discussed in Chapter III and IV), the merger of organocatalysis and photochemistry enabled the direct asymmetric β-functionalization of enals triggered by the visible-light excitation of in situ formed chiral iminium salts. In the second part of the PhD studies (discussed in Chapter V), the excited-state properties of 4-alkyl-1,4-dihydropyridines (alkyl-DHP) were exploited in combination with transition metal catalysis for the development of nickel-catalyzed radical cross-couplings.
Bentz, Emilie Louise Marie. „Zinc enolate coupling : carbon-carbon bond forming reactions“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419263.
Der volle Inhalt der QuelleMori-Quiroz, Luis Martin. „Transition metal catalyzed Carbon-nitrogen bond forming reactions“. Revista de Química, 2015. http://repositorio.pucp.edu.pe/index/handle/123456789/101381.
Der volle Inhalt der QuelleCarbon-nitrogen (C–N) bond forming reactions are fundamental transformations in nature and also basic processes for the preparation of molecules and materials relevant to human activities. The development of new and efficient reactions for the formation of C–N bonds are therefore of great interest in academic and industrial settings. Progress in the last 20 years has focused mainly in Csp2–N bond forming processes; however, there is growing range of transition metal catalyzed reactions for the introduction of nitrogen in alkyl frameworks (Csp3–N bond formation). This article describes a selection of modern catalytic methods for the formation of C–N bonds.
Pilarski, Lukasz T. „Palladacycles for non-redox C-C bond forming reactions“. Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495644.
Der volle Inhalt der QuelleHughes, Steven P. „Studies in bond-forming reactions of alpha-lithiated aziridines“. Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496916.
Der volle Inhalt der QuelleLomas, Sarah. „C-C bond forming catalysis with alkaline earth acetylides“. Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604644.
Der volle Inhalt der QuelleTundel, Rachel E. (Rachel Elizabeth). „Advances in palladium-catalyzed carbon-nitrogen bond forming processes“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36283.
Der volle Inhalt der QuelleVita. Leaf 68 blank.
Includes bibliographical references.
Chapter 1. Microwave-assisted, palladium-catalyzed C-N bond-forming reactions with aryl/heteroaryl nonaflates/halides and amines using the soluble amine bases DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) and a catalyst system consisting of Pd2dba3 and ligands (XantPhos, 2-dicylcohexylphosphino-2',4',6'-triisopropyl-1,1 '-biphenyl (XPhos) and 2-di-tert-butylphosphino-2',4',6'-triisopropyl-1, '-biphenyl) resulted in good to excellent yields of arylamines in short reaction times. Chapter 2. Using a catalyst comprised of the bulky, electron-rich monophosphine ligand di-tert-Butyl XPhos (2-di-tert-butylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl) and Pd2dba3 with sodium tert-butoxide as the base, amino heterocycles were coupled successfully with aryl/heteroaryl halides in moderate to excellent yields.
by Rachel E. Tundel.
S.B.
Gates, Bradley Durward. „Novel thermal and electrochemical carbon-carbon bond-forming reactions /“. The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761307998.
Der volle Inhalt der QuelleBrace, Gareth Neil. „Applications of palladium-catalysed C-N bond forming reactions“. Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428381.
Der volle Inhalt der QuelleBücher zum Thema "Bond forming"
M, Roberts Stanley, Hrsg. Metal catalysed carbon-carbon bond-forming reactions. Chichester, West Sussex, England: John Wiley, 2004.
Den vollen Inhalt der Quelle findenRodriguez, Jean, und Damien Bonne. Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119006220.
Der volle Inhalt der QuelleRodriguez, Jean, und Damien Bonne. Stereoselective multiple bond-forming transformations in organic synthesis. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.
Den vollen Inhalt der Quelle findenRoberts, Stanley M., Jianliang Xiao, John Whittall und Tom E. Pickett, Hrsg. Catalysts for Fine Chemical Synthesis, Volume 3, Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470862017.
Der volle Inhalt der QuelleTechnical Association of the Pulp and Paper Industry, Engineering Conference (1997 : Nashville, Tenn.) und Papermakers Conference (1997 : Nashville, Tenn.), Hrsg. Engineering & papermakers: Forming bonds for better papermaking : October 6-9, 1997, Opryland Hotel, Nashville, TN. Atlanta, GA: TAPPI Press, 1997.
Den vollen Inhalt der Quelle findenDanheiser, Rick L. Asymmetric Carbon-Carbon Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2018.
Den vollen Inhalt der Quelle findenRoberts, Stanley M., John Whittall, Jianliang Xiao und Tom E. Pickett. Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Wiley & Sons, Incorporated, John, 2007.
Den vollen Inhalt der Quelle findenSharma, Rakesh Kumar, und Bubun Banerjee. [Set Green-Bond Forming Reactions, Vol 1+2]. de Gruyter GmbH, Walter, 2022.
Den vollen Inhalt der Quelle findenEnders, Dieter, Jean Rodriguez und Damien Bonne. Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis. Wiley & Sons, Incorporated, John, 2015.
Den vollen Inhalt der Quelle findenEnders, Dieter, Jean Rodriguez und Damien Bonne. Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis. Wiley & Sons, Limited, John, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bond forming"
Sun, Chang Q. „Kinetics of Bond Forming and Bond Switching“. In Springer Series in Chemical Physics, 147–51. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-21-7_7.
Der volle Inhalt der QuelleZhdankin, Viktor V. „C-C-Bond Forming Reactions“. In Hypervalent Iodine Chemistry, 99–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_4.
Der volle Inhalt der QuelleKoser, Gerald F. „C-Heteroatom-Bond Forming Reactions“. In Hypervalent Iodine Chemistry, 137–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_5.
Der volle Inhalt der QuelleKoser, Gerald F. „Heteroatom-Heteroatom-Bond Forming Reactions“. In Hypervalent Iodine Chemistry, 173–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_6.
Der volle Inhalt der QuelleAtta-ur-Rahman und Zahir Shah. „Stereoselective Carbon-Carbon Bond Forming Reactions“. In Stereoselective Synthesis in Organic Chemistry, 185–396. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8327-7_4.
Der volle Inhalt der QuelleShimizu, Masaki. „CC Bond-Forming Coupling Reactions“. In Transition-Metal-Mediated Aromatic Ring Construction, 571–616. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118629871.ch22.
Der volle Inhalt der QuelleParashar, Rakesh Kumar. „Carbon-Carbon Double Bond Forming Reactions“. In Reaction Mechanisms in Organic Synthesis, 148–90. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch4.
Der volle Inhalt der QuelleBonne, Damien, Thierry Constantieux, Yoann Coquerel und Jean Rodriguez. „Cascade Reactions Forming Both C-C Bond and C-Heteroatom BOND“. In Stereoselective Organocatalysis, 559–85. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch16.
Der volle Inhalt der QuelleZarganes-Tzitzikas, Tryfon, Ahmad Yazbak und Alexander Dömling. „Industrial Applications of Multiple Bond-Forming Transformations (MBFTs)“. In Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis, 423–46. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119006220.ch15.
Der volle Inhalt der QuelleParashar, Rakesh Kumar. „Transition Metal-Mediated Carbon-Carbon Bond Forming Reactions“. In Reaction Mechanisms in Organic Synthesis, 191–223. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bond forming"
PIWEK, A. „Influence of enlarged joining zone interfaces on the bond properties of tailored formed hybrid components made of 20MnCr5 steel and EN AW-6082 aluminium“. In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-87.
Der volle Inhalt der QuelleDENKENA, B. „Manufacturing of graded grinding wheels for flute grinding“. In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-132.
Der volle Inhalt der QuellePIWEK, A. „Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial cooling“. In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-64.
Der volle Inhalt der QuelleSIEGMUND, M. „Hot die forging with nitrided and thermally stabilized DLC coated tools“. In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-63.
Der volle Inhalt der QuelleKAUSHIK, Pankaj. „Friction stir-assisted cladding: Solid-state recycling of machine shop scrap for sustainable metal production“. In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-309.
Der volle Inhalt der QuelleBiresaw, Girma, Terry A. Isbell und Steven C. Cermak. „Film-Forming Properties of Estolides“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64089.
Der volle Inhalt der QuelleKhaledi, Kavan, Stephan Wulfinghoff und Stefanie Reese. „Analysis of factors influencing the bond strength in roll bonding processes“. In PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5034863.
Der volle Inhalt der QuelleUbani, Solomon, Muhannad A. Obeidi und Dermot Brabazon. „Laser surface texturing for the improvement of press-fit joint bond strength“. In PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112689.
Der volle Inhalt der QuelleWang, Xueqiang, Joan G. Donaire und Ruben Martin. „Metal-Free sp2 and sp3 C-H Functionalization/C-O Bond Forming Reaction“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013815132216.
Der volle Inhalt der QuelleChen, Jau-Liang, Yeh-Chao Lin, Chun-Hsien Liu, Wen-Chang Kuo und Tzung-Ching Lee. „Application of Neural Network in Free Air Ball Forming for Wire Bonder“. In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/cie-9087.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bond forming"
Templeton, J. L. Bond forming reactions of carbyne and nitrene complexes. Final technical report for DE-FG02-96ER14608. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/803353.
Der volle Inhalt der QuelleCohen, William S. Defense Issue: Volume 13, Number 27. Forming Bonds of Diplomacy to Avoid War. Fort Belvoir, VA: Defense Technical Information Center, März 1998. http://dx.doi.org/10.21236/ada342485.
Der volle Inhalt der QuelleRiveros, Guillermo, Felipe Acosta, Reena Patel und Wayne Hodo. Computational mechanics of the paddlefish rostrum. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41860.
Der volle Inhalt der Quelle