Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Boltzmann Distributions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Boltzmann Distributions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Boltzmann Distributions"
Khamnei, Hossein Jabbari, Sajad Nikannia, Masood Fathi und Shahryar Ghorbani. „Modeling income distribution: An econophysics approach“. Mathematical Biosciences and Engineering 20, Nr. 7 (2023): 13171–81. http://dx.doi.org/10.3934/mbe.2023587.
Der volle Inhalt der QuelleHornack, Fred M. „Visualizing Boltzmann-like distributions“. Journal of Chemical Education 65, Nr. 1 (Januar 1988): 24. http://dx.doi.org/10.1021/ed065p24.
Der volle Inhalt der QuelleOrland, Henri. „Accelerated Sampling of Boltzmann Distributions“. Journal of the Physical Society of Japan 78, Nr. 10 (15.10.2009): 103002. http://dx.doi.org/10.1143/jpsj.78.103002.
Der volle Inhalt der QuelleLiu, Fu-Hu, Ya-Qin Gao und Hua-Rong Wei. „On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions“. Advances in High Energy Physics 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/293873.
Der volle Inhalt der QuelleTreumann, Rudolf A., und Wolfgang Baumjohann. „Generalised partition functions: inferences on phase space distributions“. Annales Geophysicae 34, Nr. 6 (02.06.2016): 557–64. http://dx.doi.org/10.5194/angeo-34-557-2016.
Der volle Inhalt der QuelleLin, Hejie, und Tsung-Wu Lin. „Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Analytical Integration“. International Journal of Statistics and Probability 10, Nr. 3 (27.04.2021): 135. http://dx.doi.org/10.5539/ijsp.v10n3p135.
Der volle Inhalt der QuelleLiu, Jeremy, Ke-Thia Yao und Federico Spedalieri. „Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers“. Entropy 22, Nr. 11 (24.10.2020): 1202. http://dx.doi.org/10.3390/e22111202.
Der volle Inhalt der QuelleKANIADAKIS, G. „PHYSICAL ORIGIN OF THE POWER-LAW TAILED STATISTICAL DISTRIBUTIONS“. Modern Physics Letters B 26, Nr. 10 (08.04.2012): 1250061. http://dx.doi.org/10.1142/s0217984912500613.
Der volle Inhalt der QuelleWhite, J. R., W. Johns, C. J. Fontes, N. M. Gill, N. R. Shaffer und C. E. Starrett. „Charge state distributions in dense plasmas“. Physics of Plasmas 29, Nr. 4 (April 2022): 043301. http://dx.doi.org/10.1063/5.0084109.
Der volle Inhalt der QuelleCastillo, Jaime S., Katherine P. Gaete, Héctor A. Muñoz, Diego I. Gallardo, Marcelo Bourguignon, Osvaldo Venegas und Héctor W. Gómez. „Scale Mixture of Maxwell-Boltzmann Distribution“. Mathematics 11, Nr. 3 (18.01.2023): 529. http://dx.doi.org/10.3390/math11030529.
Der volle Inhalt der QuelleDissertationen zum Thema "Boltzmann Distributions"
Vilquin, Alexandre. „Structure des ondes de choc dans les gaz granulaires“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0349/document.
Der volle Inhalt der QuelleIn different materials such as gases, plasmas and granular material, an object, moving at supersonic speed,compresses and heats the fluid ahead. The shock front is the out-of-equilibrium area, where violent changesin temperature, pressure and density occur. It has a particular structure with notably strongly non-Gaussianparticle velocity distributions, which are difficult to observe. In an important breakthrough in 1951, Mott-Smithdescribes the shock front as a superposition of two states: the initial supersonic gas and the compressed andheated subsonic gas, implying existence of bimodal velocity distributions. Several experiences at high Machnumbers show this overall bimodal structure. However this model does not explain the existence of a surplusof particles with intermediate velocities, between the supersonic and the subsonic gas.This thesis focuses on shock waves in granular gases, where particles undergo only inelastic binary collisions.In these dissipative gases, the granular temperature, reflecting the particle random motion, allows to definethe equivalent to the speed of sound by analogy with molecular gases. The low values of this speed of soundpermit to generate easily shock waves in which each particle can be tracked, unlike molecular gases. The firstpart of this work focuses on the effect of the energy dissipation, due to inelastic collisions, on the shock frontstructure in granular gases. Modifications induced on temperature, density and mean velocity, are captured bya model based on the bimodal hypothesis of Mott-Smith and including energy dissipation. The second part isdevoted to the study of velocity distributions in the shock front. From experiences in granular gases, a trimodaldescription, including an additional intermediate state, is proposed and successfully extended to the velocitydistributions in molecular gases
Shi, Yong. „Lattice Boltzmann models for microscale fluid flows and heat transfer /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20SHI.
Der volle Inhalt der QuelleJin, Kang Meir Amnon J. „The lattice gas model and Lattice Boltzmann model on hexagonal grids“. Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/master's/JIN_KANG_53.pdf.
Der volle Inhalt der QuelleLuo, Li-Shi. „Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30259.
Der volle Inhalt der QuelleMori, Hideo, Tomohide Niimi, Isao Akiyama und Takumi Tsuzuki. „Experimental detection of rotational non-Boltzmann distribution in supersonic free molecular nitrogen flows“. American Institite of Physics, 2005. http://hdl.handle.net/2237/6963.
Der volle Inhalt der QuelleHernandez, Freddy. „Fluctuations à l'équilibre d'un modèle stochastique non gradient qui conserve l'énergie“. Paris 9, 2010. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2010PA090029.
Der volle Inhalt der QuelleIn this thesis we study the equilibrium energy fluctuation field of a one-dimensional reversible non gradient model. We prove that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck process. By adapting the non gradient method introduced by S. R. S Varadhan, we identify the correct diffusion term, which allows us to derive the Boltzmann-Gibbs principle. This is the key point to show that the energy fluctuation field converges in the sense of finite dimensional distributions to a generalized Ornstein-Uhlenbeck process. Moreover, using again the Boltzmann-Gibbs principle we also prove tightness for the energy fluctuation field in a specified Sobolev space, which together with the finite dimensional convergence implies the convergence in distribution to the generalized Ornstein-Uhlenbeck process mentioned above. The fact that the conserved quantity is not a linear functional of the coordinates of the system, introduces new difficulties of geometric nature in applying Varadhan's non gradient method
Redwane, Hicham. „Solutions normalisées de problèmes paraboliques et elliptiques non linéaires“. Rouen, 1997. http://www.theses.fr/1997ROUES059.
Der volle Inhalt der QuelleSosov, Yuriy. „Legendre Polynomial Expansion of the Electron Boltzmann Equation Applied to the Discharge in Argon“. University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1145290801.
Der volle Inhalt der QuelleChidiac, Chidiac. „Modélisation de la relaxation rotationnelle de CO en jet supersonique libre : effet de la condensation et des phénomènes de glissement“. Châtenay-Malabry, Ecole centrale de Paris, 1987. http://www.theses.fr/1987ECAP0069.
Der volle Inhalt der QuelleMarcou, Olivier. „Modélisation et contrôle d’écoulements à surface libre par la méthode de Boltzmann sur réseau“. Perpignan, 2010. http://www.theses.fr/2010PERP1001.
Der volle Inhalt der QuelleThis PhD work considers the general problem of modelling and simulation of complex systems and deals with the domain of control and management of water resources. We propose here an original approach based on Lattice Boltzmann models (LB) for modelling free surface flows in irrigation canals, usually described with the non-linear shallow water equations. We adapted a bi-fluid model and studied the boundary conditions which allow to reproduce the geometry of a free-surface irrigation canal. Methods for estimating the desired hydraulic quantities were developed. We studied the behavior of submerged underflow gates, and we show that the model is able to spontaneously and correctly describe how the gates function in quite different situations. Validations were realized by comparing results from simulations and experimentations performed on a laboratory micro-canal facility. We also introduced sedimentation phenomena in the model and studied the influence of a sedimentation deposit on the flow. Comparisons between experimental and simulation results were also performed and converged
Bücher zum Thema "Boltzmann Distributions"
Alexeev, Boris V. Generalized Boltzmann physical kinetics. Amsterdam: Elsevier, 2004.
Den vollen Inhalt der Quelle findenStochastic dynamics and Boltzmann hierarchy. Berlin: Walter de Gruyter, 2009.
Den vollen Inhalt der Quelle findenHydrodynamic limits of the Boltzmann equation. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenYeh, Chou, und Langley Research Center, Hrsg. On higher order dynamics in lattice-based models using Chapman-Enskog method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle finden1973-, Villani Cédric, und Centre Émile Borel, Hrsg. Entropy methods for the Boltzmann equation: Lectures from a special semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenLallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenBach, Alexander. Indistinguishable classical particles. Berlin: Springer, 1997.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Spectroscopic diagnostics of an arc jet heated air plasma: Thesis ... [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Numerical investigations in the backflow region of a vacuum plume: Semi-annual scientific and technical reports, October 1991 - May 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenDarrigol, Olivier. The Boltzmann Equation and the H Theorem (1872–1875). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Boltzmann Distributions"
Starzak, Michael E. „Maxwell–Boltzmann Distributions“. In Energy and Entropy, 197–216. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.
Der volle Inhalt der QuelleBiró, Tamás Sándor, und Antal Jakovác. „Fluctuation, Dissipation, and Non-Boltzmann Energy Distributions“. In SpringerBriefs in Physics, 61–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11689-7_5.
Der volle Inhalt der QuelleKosmatopoulos, Elias B., und Manolis A. Christodoulou. „The Boltzmann ECE Neural Network: A Learning Machine for Estimating Unknown Probability Distributions“. In Artificial Neural Nets and Genetic Algorithms, 11–17. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-7533-0_3.
Der volle Inhalt der QuelleElstner, Marcus, Qiang Cui und Maja Gruden. „The Boltzmann Distribution“. In Introduction to Statistical Thermodynamics, 191–222. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54994-6_7.
Der volle Inhalt der QuelleBalian, Roger. „The Boltzmann-Gibbs Distribution“. In From Microphysics to Macrophysics, 141–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-45475-5_5.
Der volle Inhalt der QuelleLyngsø, Rune B. „RNA Secondary Structure Boltzmann Distribution“. In Encyclopedia of Algorithms, 1842–46. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_345.
Der volle Inhalt der QuelleLyngsø, Rune B. „RNA Secondary Structure Boltzmann Distribution“. In Encyclopedia of Algorithms, 777–79. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_345.
Der volle Inhalt der QuelleKoks, Don. „The Non-Isolated System: the Boltzmann Distribution“. In Microstates, Entropy and Quanta, 275–331. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02429-1_5.
Der volle Inhalt der QuelleLian, Hao, Ang Li, Yang Tian und Ying Chen. „An Evacuation Simulation Based on Boltzmann Distribution“. In Advanced Research on Computer Education, Simulation and Modeling, 327–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21783-8_54.
Der volle Inhalt der QuellePal, Dipti Prakas, und Hridis Kr Pal. „Income Distribution in the Boltzmann-Pareto Framework“. In New Economic Windows, 218–22. Milano: Springer Milan, 2005. http://dx.doi.org/10.1007/88-470-0389-x_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Boltzmann Distributions"
Elwasif, Wael R., Laurene V. Fausett und Sam Harbaugh. „Boltzmann machine generation of initial asset distributions“. In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, herausgegeben von Steven K. Rogers und Dennis W. Ruck. SPIE, 1995. http://dx.doi.org/10.1117/12.205123.
Der volle Inhalt der QuelleNasarayya Chari, S. Siva, und K. P. N. Murthy. „Non-equilibrium work distributions from fluctuating lattice-Boltzmann model“. In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709947.
Der volle Inhalt der QuelleChi, Ed H. „From Missing Data to Boltzmann Distributions and Time Dynamics“. In WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3336191.3372193.
Der volle Inhalt der QuelleSu, Yan. „A Lattice Boltzmann Simulation for Thermal Energy Diffusion Through a Micro/Nanoscale Thin Film“. In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3901.
Der volle Inhalt der QuelleArgun, Aykut, Ali-Reza Moradi, Erçağ Pinçe, Gokhan Baris Bagci, Alberto Imparato und Giovanni Volpe. „Non-Boltzmann stationary distributions and non-equilibrium relations in active baths“. In Optical Trapping Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ota.2017.otw3e.5.
Der volle Inhalt der QuelleCai, Peixu, Wangze Shen, Ruohan Yang und Qixian Zhou. „Reinforcing feature distributions of hidden units of Boltzmann machine using correlations“. In 2022 International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022), herausgegeben von Chuanjun Zhao. SPIE, 2023. http://dx.doi.org/10.1117/12.2672661.
Der volle Inhalt der QuelleKrause, Oswin, Asja Fischer und Christian Igel. „Algorithms for Estimating the Partition Function of Restricted Boltzmann Machines (Extended Abstract)“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/704.
Der volle Inhalt der QuelleSchepke, Claudio, und Nicolas Maillard. „Performance Improvement of the Parallel Lattice Boltzmann Method Through Blocked Data Distributions“. In 19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07). IEEE, 2007. http://dx.doi.org/10.1109/sbac-pad.2007.12.
Der volle Inhalt der QuelleMasulli, Francesco, Massimo Riani, Enrico Simonotto und Fabrizio Vannucci. „Boltzmann distributions and neural networks: models of unbalanced interpretations of reversible patterns“. In Aerospace Sensing, herausgegeben von Dennis W. Ruck. SPIE, 1992. http://dx.doi.org/10.1117/12.140093.
Der volle Inhalt der QuelleSun, Jinjuan, Jianying Gong, Guojun Li und Tieyu Gao. „Lattice Boltzmann Simulation of Frost Formation Process“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17700.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Boltzmann Distributions"
Langenbrunner, James, und Jane Booker. CALCULATION OF THE FIRST MOMENT OF ENERGY USING D-T REACTIVITY FORMALISMS UNDER THE MAXWELL-BOLTZMANN DISTRIBUTION—PART I. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1663180.
Der volle Inhalt der QuelleLangenbrunner, James, und Jane Booker. Calculation Of The First Moment Of Energy Using D-T Reactivity Formalisms Under The Maxwell-Boltzmann Distribution--Part II. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1679985.
Der volle Inhalt der Quelle