Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Blow-off Mechanism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Blow-off Mechanism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Blow-off Mechanism"
Yamaguchi, Shigeki, Norio Ohiwa und Tatsuya Hasegawa. „Structure and blow-off mechanism of rod-stabilized premixed flame“. Combustion and Flame 62, Nr. 1 (Oktober 1985): 31–41. http://dx.doi.org/10.1016/0010-2180(85)90091-4.
Der volle Inhalt der QuelleKedia, Kushal S., und Ahmed F. Ghoniem. „The blow-off mechanism of a bluff-body stabilized laminar premixed flame“. Combustion and Flame 162, Nr. 4 (April 2015): 1304–15. http://dx.doi.org/10.1016/j.combustflame.2014.10.017.
Der volle Inhalt der QuelleBoopathi, S., P. Maran, V. Caleb Eugene und S. Prabhu. „Analysis of Lift off Height and Blow-Off Mechanism of Turbulent Flame by V-Gutter Bluff Body“. Applied Mechanics and Materials 787 (August 2015): 727–31. http://dx.doi.org/10.4028/www.scientific.net/amm.787.727.
Der volle Inhalt der QuelleKim, Yu Jeong, Bok Jik Lee und Hong G. Im. „Dynamics of lean premixed flames stabilized on a meso-scale bluff-body in an unconfined flow field“. Mathematical Modelling of Natural Phenomena 13, Nr. 6 (2018): 48. http://dx.doi.org/10.1051/mmnp/2018051.
Der volle Inhalt der QuelleKOCSIS, G., J. S. BAKOS, S. KÁLVIN, L. KÖNEN, G. MANK und A. POSPIESZCZYK. „Toroidal transport studies in TEXTOR using lithium laser blow-off injection“. Journal of Plasma Physics 58, Nr. 1 (Juli 1997): 19–30. http://dx.doi.org/10.1017/s0022377897005795.
Der volle Inhalt der QuelleWan, Jianlong, und Haibo Zhao. „Blow-off mechanism of a holder-stabilized laminar premixed flame in a preheated mesoscale combustor“. Combustion and Flame 220 (Oktober 2020): 358–67. http://dx.doi.org/10.1016/j.combustflame.2020.07.012.
Der volle Inhalt der QuelleSingh, R. K., Ajai Kumar, V. Prahlad und H. C. Joshi. „Generation of fast neutrals in a laser-blow-off of LiF–C film: A formation mechanism“. Applied Physics Letters 92, Nr. 17 (28.04.2008): 171502. http://dx.doi.org/10.1063/1.2906368.
Der volle Inhalt der QuelleLindstedt, R. P. „The modelling of direct chemical kinetic effects in turbulent flames“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 214, Nr. 3 (01.03.2000): 177–89. http://dx.doi.org/10.1243/0954410001531999.
Der volle Inhalt der QuelleSack, N., und I. Lichtenstadt. „The Effect of General Relativity and Equation of State on the Adiabatic Collapse and Explosion of a Stellar Core“. International Astronomical Union Colloquium 108 (1988): 417–19. http://dx.doi.org/10.1017/s0252921100094215.
Der volle Inhalt der QuelleBykov, V., V. V. Gubernov und U. Maas. „Mechanisms performance and pressure dependence of hydrogen/air burner-stabilized flames“. Mathematical Modelling of Natural Phenomena 13, Nr. 6 (2018): 51. http://dx.doi.org/10.1051/mmnp/2018046.
Der volle Inhalt der QuelleDissertationen zum Thema "Blow-off Mechanism"
Kedia, Kushal Sharad. „Development of a multi-scale projection method with immersed boundaries for chemically reactive flows and its application to examine flame stabilization and blow-off mechanisms“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85234.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 193-201).
High-fidelity multi-scale simulation tools are critically important for examining energy conversion processes in which the coupling of complex chemical kinetics, molecular transport, continuum mixing and acoustics play important roles. The objectives of this thesis are: (i) to develop a state-of-the-art numerical approach to capture the wide spectra of spatio-temporal scales associated with reacting flows around immersed boundaries, and (ii) to use this tool to investigate the underlying mechanisms of flame stabilization and blow-off in canonical configurations. A second-order immersed boundary method for reacting flow simulations near heat conducting, grid conforming, solid object has been developed. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a semi-implicit operator-split projection algorithm. The immersed boundary approach captures the flame-wall interactions. The SAMR framework and the operator-split algorithm resolve several decades of length and time efficiently. A novel "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that symmetric derivatives and interpolation stencils can be used throughout the interior of the domain, thereby maintaining the order of accuracy of the method. Near an immersed solid boundary, single-sided buffer zones are used to resolve the species discontinuities, and dual buffer zones are used to capture the temperature gradient discontinuities. This eliminates the need to utilize artificial flame anchoring boundary conditions used in existing state-of-the-art numerical methods. As such, using this approach, it is possible for the first time to analyze the complex and subtle processes near walls that govern flame stabilization. The approach can resolve the flow around multiple immersed solids using coordinate conforming representation, making it valuable for future research investigating a variety of multi-physics reacting flows while incorporating flame-wall interactions, such as catalytic and plasma interactions. Using the numerical method, limits on flame stabilization in two canonical configurations: bluff-body and perforated-plate, were investigated and the underlying physical mechanisms were elucidated. A significant departure from the conventional two-zone premixed flame-structure was observed in the anchoring region for both configurations. In the bluff-body wake, the location where the flame is initiated, preferential diffusion and conjugate heat exchange furnish conditions for ignition and enable streamwise flame continuation. In the perforated-plate, on the other hand, a combination of conjugate heat exchange and flame curvature is responsible for local anchoring. For both configurations, it was found that a flame was stable when (1) the local flame displacement speed was equal to the flow speed (static stability), and (2) the gradient of the flame displacement speed normal to its surface was higher than the gradient of the flow speed along the same direction (dynamic stability). As the blow-off conditions were approached, the difference between the former and the latter decreased until the dynamic stability condition (2) was violated. The blowoff of flames stabilized in a bluff-body wake start downstream, near the end of the combustion-products dominated recirculation zone, by flame pinching into an upstream and a downstream propagating sections. The blow-off of flames stabilized in flow perforated-plate wake start in the anchoring region, near the end of the preheated reactants-filled recirculation zone, with the entire flame front convecting downstream. These simulations elucidated the thus far unknown physics of the underlying flame stabilization and blow-off mechanisms, understanding which is crucial for designing flame-holders for combustors that support continuous burning. Such an investigation is not possible without the advanced numerical tool developed in this work. Based on the insight gained from the simulations, analytical models were developed to describe the dynamic response of flames to flow perturbations in an acoustically coupled environment. These models are instrumental in optimizing combustor designs and applying active control to guarantee dynamic stability if necessary.
by Kushal Sharad Kedia.
Ph. D.
Kim, Yu Jeong. „Computational Studies of Stabilization and Blow-off Mechanisms in Bluff-body Stabilized Lean Premixed Flames“. Diss., 2021. http://hdl.handle.net/10754/669818.
Der volle Inhalt der QuelleBuchteile zum Thema "Blow-off Mechanism"
Lovejoy, Shaun. „Macroweather predictions and climate projections“. In Weather, Macroweather, and the Climate. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190864217.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Blow-off Mechanism"
Pathania, Rohit S., Aaron Skiba, Jennifer A. Sidey und Epaminondas Mastorakos. „Blow-off mechanism in a turbulent premixed bluff-body stabilized flame with pre-vaporized fuels“. In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2238.
Der volle Inhalt der QuellePathania, Rohit S., Aaron Skiba, Jennifer A. Sidey und Epaminondas Mastorakos. „Correction: Blow-off mechanism in a turbulent premixed bluff-body stabilized flame with pre-vaporized fuels“. In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2238.c1.
Der volle Inhalt der QuelleKatta, Viswanath R., und W. M. Roquemore. „Studies on Lean-Blowout Characteristics of a Premixed Jet Flame“. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-115.
Der volle Inhalt der QuelleCiardiello, Roberto, Rohit S. Pathania, Patton M. Allison, Pedro M. de Oliveira und Epaminondas Mastorakos. „Ignition Probability and Lean Ignition Behaviour of a Swirled Premixed Bluff Body Stabilised Annular Combustor“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15434.
Der volle Inhalt der QuelleKim, Tae-Uk, JeongWoo Shin und Sang Wook Lee. „Design and Testing of a Crashworthy Landing Gear“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52474.
Der volle Inhalt der QuelleReich, F., F. Otremba und A. Würsig. „Fail-Safe? A Study About the Integrity of Safety Valves for Tanks for Dangerous Goods“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62204.
Der volle Inhalt der QuelleCordier, M., A. Vandel, B. Renou, G. Cabot, M. A. Boukhalfa und M. Cazalens. „Spark Ignition of Confined Swirled Flames: Experimental and Numerical Investigation“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94384.
Der volle Inhalt der QuelleVishnu, R., R. I. Sujith und Preeti Aghalayam. „Investigation of Flame Dynamics in a V - Flame Combustor During Combustion Instability“. In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8345.
Der volle Inhalt der QuelleDuchaine, Patrick, Quentin Bouyssou, Stéphane Pascaud, Gorka Exilard und Christophe Viguier. „Soot Emission Optimization of a Helicopter Engine: From Injector Design to Engine Tests Validation“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16100.
Der volle Inhalt der QuelleBelardini, Elisabetta, Rajeev Pandit, V. V. N. K. Satish Koyyalamudi, Dante Tommaso Rubino und Libero Tapinassi. „2nd Quadrant Centrifugal Compressor Performance: Part II“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57124.
Der volle Inhalt der Quelle