Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Blood-brain barrier Physiology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Blood-brain barrier Physiology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Blood-brain barrier Physiology"
Dunn, Jeff F., und Albert M. Isaacs. „The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers“. Journal of Applied Physiology 131, Nr. 3 (01.09.2021): 977–85. http://dx.doi.org/10.1152/japplphysiol.00108.2020.
Der volle Inhalt der QuelleKoziara, J. M., P. R. Lockman, D. D. Allen und R. J. Mumper. „The Blood-Brain Barrier and Brain Drug Delivery“. Journal of Nanoscience and Nanotechnology 6, Nr. 9 (01.09.2006): 2712–35. http://dx.doi.org/10.1166/jnn.2006.441.
Der volle Inhalt der QuelleMcCaffrey, Gwen, und Thomas P. Davis. „Physiology and Pathophysiology of the Blood-Brain Barrier“. Journal of Investigative Medicine 60, Nr. 8 (01.12.2012): 1131–40. http://dx.doi.org/10.2310/jim.0b013e318276de79.
Der volle Inhalt der QuelleSerlin, Yonatan, Ilan Shelef, Boris Knyazer und Alon Friedman. „Anatomy and physiology of the blood–brain barrier“. Seminars in Cell & Developmental Biology 38 (Februar 2015): 2–6. http://dx.doi.org/10.1016/j.semcdb.2015.01.002.
Der volle Inhalt der QuelleRobinson, P. J. „MEASUREMENT OF BLOOD-BRAIN BARRIER PERMEABILITY“. Clinical and Experimental Pharmacology and Physiology 17, Nr. 12 (Dezember 1990): 829–40. http://dx.doi.org/10.1111/j.1440-1681.1990.tb01286.x.
Der volle Inhalt der QuelleTietz, Silvia, und Britta Engelhardt. „Brain barriers: Crosstalk between complex tight junctions and adherens junctions“. Journal of Cell Biology 209, Nr. 4 (25.05.2015): 493–506. http://dx.doi.org/10.1083/jcb.201412147.
Der volle Inhalt der QuelleGrant, Gerald A., N. Joan Abbott und Damir Janigro. „Understanding the Physiology of the Blood-Brain Barrier: In Vitro Models“. Physiology 13, Nr. 6 (Dezember 1998): 287–93. http://dx.doi.org/10.1152/physiologyonline.1998.13.6.287.
Der volle Inhalt der QuelleErmisch, A., P. Brust, R. Kretzschmar und H. J. Ruhle. „Peptides and blood-brain barrier transport“. Physiological Reviews 73, Nr. 3 (01.07.1993): 489–527. http://dx.doi.org/10.1152/physrev.1993.73.3.489.
Der volle Inhalt der QuelleSweeney, Melanie D., Zhen Zhao, Axel Montagne, Amy R. Nelson und Berislav V. Zlokovic. „Blood-Brain Barrier: From Physiology to Disease and Back“. Physiological Reviews 99, Nr. 1 (01.01.2019): 21–78. http://dx.doi.org/10.1152/physrev.00050.2017.
Der volle Inhalt der QuelleGray, Sarah M., und Eugene J. Barrett. „Insulin transport into the brain“. American Journal of Physiology-Cell Physiology 315, Nr. 2 (01.08.2018): C125—C136. http://dx.doi.org/10.1152/ajpcell.00240.2017.
Der volle Inhalt der QuelleDissertationen zum Thema "Blood-brain barrier Physiology"
Zhu, Chunni. „The Blood-brain barrier in normal and pathological conditions“. Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phz637.pdf.
Der volle Inhalt der QuelleCorsi, Mariangela. „Ketogenic diet impacts Blood-Brain Barrier physiology : implications for Alzheimers's disease“. Thesis, Artois, 2018. http://www.theses.fr/2018ARTO0401.
Der volle Inhalt der QuelleGiven the current absence of an effective pharmacologic treatment for Alzheimer’s disease (AD), the development of alternative therapeutic approaches (such as the ketogenic diet, KD) might be considered. The KD is a low-carbohydrate, high-fat diet based on the production of ketone bodies (KBs) in the blood. In view of the KD’s beneficial effects on the central nervous system and the lack of published data on the blood brain barrier (BBB), we used an in vivo/in vitro approach to investigate the effect of the KD and KBs on the BBB. For the in vivo study, blood from 129Sv mice was assayed for beta-hydroxybutyrate and glucose dosage. Brain capillaries were isolated from mouse cortices, and RT-qPCR assays were used to evaluate the mRNA expression of transporters/receptors involved in the synthesis and transport of KBs, glucose and beta-amyloid peptide. The mRNA assays were also performed in an in vitro BBB model, based on brain-like endothelial cells (BLECs). After a ketotic state had been established and the BLECs’ integrity had been confirmed, we evaluated the mRNA expression of KB-, glucose- and amyloid-beta-related genes. Lastly, the transport of fluorescently labelled beta-amyloid peptide across the BBB was studied after treatment with KBs. Our results showed that KBs modulate the physiology of the BBB by regulating the expression of certain beta-amyloid peptide transporters/receptors and amyloid peptide-synthesizing enzymes. These data suggest that it is possible to modulate key molecular players in beta-amyloid peptide transport and synthesis at the BBB, and thus open up new perspectives for studying KB-related therapeutic approaches
Davis, Brandon James. „VEGF signaling mechanisms in increased blood brain barrier permeability following hypoxia“. Diss., Search in ProQuest Dissertations & Theses. UC Only, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3261273.
Der volle Inhalt der QuelleConnell, John J. „Selective permeabilisation of the blood-brain barrier at sites of metastasis“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8c027208-8ea6-4de4-be78-ccead5121509.
Der volle Inhalt der QuelleHurley, Johannah. „Lipid composition and modulation of transport function in an in vitro model of the blood-brain barrier“. Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268437.
Der volle Inhalt der QuelleAfrica, Luan Dane. „HIV-1 associated neuroinflammation : effects of two complimentary medicines illustrated in an in vitro model of the blood-brain barrier“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95869.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Background: Neuroinflammation is central to the aetiology of HIV-associated neurocognitive disorders (HAND) that are prevalent in late stage AIDS. ARV treatments are rolled out relatively late in the context of neuroinflammatory changes, so that their usefulness in directly preventing HAND is probably limited. It is common practice for HIV+ individuals in developing countries to make use of traditional/complimentary medicines. One such medicine is Sutherlandia frutescens - commonly consumed as a water infusion. We have also identified a new candidate complimentary medicine for use in this context - grape seed-derived proanthocyanidolic oligomers (PCO) have significant anti-inflammatory action in the peripheral compartment in the context of e.g. skeletal muscle injury, but have not been investigated in the context of either neuroinflammation or HIV/AIDS. Here the efficacy of these two substances as an anti-inflammatory modality in this context was investigated in an in vitro co-culture model of the blood-brain barrier (BBB). Methods: Single cultures of human astrocytes, HUVECs and primary human monocytes, as well as co-cultures (BBB), were stimulated with HIV-1 subtype B & C Tat protein and/or HL2/3 cell secretory proteins after pre-treatment with S. frutescens or PCO extracts. Effects of this pre-treatment on pro-inflammatory mediator expression and monocyte migration across the BBB were assessed. Results: In accordance with others, B Tat was more pro-inflammatory than C Tat, validating our model. S. frutescens decreased IL-1β secretion significantly (P<0.0001), but exacerbated both monocyte chemoattractant protein-1 (P<0001) – a major role player in HIV-associated neuroinflammation – and CD14+ monocyte infiltration across the BBB (P<0.01). PCO pre-treatment resulted in a significantly dampened IL-1β (P<0.0001) response to stimulation with HIV-associated proteins. In contrast to S. frutescens, PCO modulated monocyte chemoattractant protein-1 (P<0001) response and decreased capacity for CD14+ monocytes to migrate across the simulated BBB (P<0.0001). Additionally, PCO pre-treatment decreased both GFAP (P<0.001) and HSP-27 (P<0.001) expression in the astrocytes of the BBB. Conclusions: Current data illustrates that the combined use of HL2/3 cells and the simulated BBB presents an accurate, disease relevant in vitro model with which to study neuroinflammation in the context of HIV/AIDS. In addition, our results caution against the use of S. frutescens as anti-inflammatory modality at any stage post-HIV infection. Novel data presented here illustrate that PCO is able to blunt the MCP-1 and IL-1β response to HIV-1 proteins in single cultures of human astrocytes and HUVECs, as well as in an in vitro simulation of the BBB. In addition, PCO was able to limit monocyte transmigration across the simulated BBB in response to HIV-1 proteins generated by HL2/3 cells. This suggests that grape seed-derived PCO could be considered as complimentary anti-neuroinflammatory drug in the context of HIV/AIDS.
AFRIKAANSE OPSOMMING: Agtergrond: Neuroinflammasie staan sentraal in die ontwikkeling van MIV-verwante toestande wat gekenmerk word deur neurokognitiewe afteruitgang, veral in die later stadia van die siekte. Aangesien anti-virale middels relatief laat toegedien word in die konteks van neuroinflammasie, is hul rol in die voorkoming van neuroinflammatoriese veranderinge heel moontlik weglaatbaar. MIV+ individue, veral in ontwikkelende lande, gebruik algemeen natuurlike medisinale preparate. Sutherlandia frutescens is een so „n middel wat as „n tee ingeneem word. Verder het ons ook „n nuwe kandidaat komplimentêre medisyne identifiseer – druiwepitekstrak wat polifenole bevat (PCO) het aansienlike anti-inflammatoriese eienskappe in die periferie, bv. in die konteks van skeletspierskade, maar die middel is nog nie voorheen in die konteks van neuroinflammasie of MIV/VIGS ondersoek nie. Hier word die anti-inflammatoriese effektiwiteit van beide middels in hierdie konteks ondersoek deur gebruik te maak van „n in vitro simulasie van die bloedbreinskans (BBS). Metodes: Kulture van menslike astrosiete, menslike naelstring endoteelselle (HUVECs) en primêre menslike monosiete, sowel as gesamentlike kulture (BBS) is met MIV-1 subtipe B en C Tat proteïen en/of HL2/3 selprodukte gestimuleer na voorafbehandeling met S. frutescens of PCO ekstrakte. Effekte op pro-inflammatoriese mediator uitdrukking sowel as monosiet migrasie oor die BBS is ondersoek. Resultate: In ooreenstemming met die literatuur was B Tat meer inflammatories as C Tat, wat die akkuraatheid en gepastheid van ons model bevestig. . S. frutescens het afskeiding van IL-1β betekenisvol verminder (P<0.0001), maar het afskeiding van beide monosiet chemoaantrekkingsproteïen-1 – „n groot rolspeler in MIV-verwante neuroinflammasie – en CD14+ monosiet migrasie oor die BBS vererger (P<0.0001 en P<0.01 onderskeidelik). PCO behandeling het „n betekenisvolle demping van die IL-1β reaksie (P<0.0001) op stimulasie met MIV-geassosieerde proteïene tot gevolg gehad. Anders as S. frutescens het PCO die MCP-1 reaksie, asook CD14+ monosiet migrasie betekenisvol inhibeer. Verder het PCO ook beide GFAP en HSP-27 uitdrukking in astrosiete van die BBS verminder (beide P<0.001). Gevolgtrekkings: Huidige data wys dat die gekombineerde gebruik van HL2/3 selle en die gesimuleerde BBS „n akkurate en fisiologies relevante in vitro model daarstel, waarmee neuroinflammasie in die konteks van MIV/VIGS bestudeer kan word. Ons resultate waarsku verder teen die gebruik van S. frutescens as anti-inflammatoriese middel in selfs die vroeë stadium na MIV infeksie. Oorspronklike data wat hier aangebied word illustreer dat PCO die pro-inflammatoriese reaksie op MIV-proteïene in kulture van astrosiete en HUVECs, asook die in vitro simulasie van die BBS, effektief demp. Verder het PCO die vermoë getoon om monosiet migrasie oor die BBS, in reaksie op MIV-1 proteïene wat hul oorsprong uit HL2/3 selle het, te beperk. Hierdie bevindings beteken dat PCO dus eerder as S. frutescens oorweeg moet word as komplimentêre anti-inflammatoriese medisyne in die konteks van MIV/VIGS.
Patel, Ankita Anil. „Examination Of A Post-Stroke Drug Treatment For Its Effect On Blood Brain Barrier Permeability, And Gene Expression Changes In The Peri-Infarct Region“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472131819.
Der volle Inhalt der QuelleFelemban, Dalal Nouruldeen. „The Effects of Cold and Freezing Temperatures on The Blood Brain Barrier and Aquaporin 1, 4, and 9 Expression in Cope's Gray Treefrog (Hyla Chrysoscelis)“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484650973702078.
Der volle Inhalt der QuelleNunes, Ana Rita Silva Martins. „O2/CO2-sensitive cyclic AMP-signalling pathway in peripheral chemoreceptors“. Doctoral thesis, Faculdade de Ciências Médicas. UNL, 2013. http://hdl.handle.net/10362/9153.
Der volle Inhalt der QuelleGraham, Cathy D. „Chemosensitive Neurons of the Locus Coeruleus and the Nucleus Tractus Solitarius: Three Dimensional Morphology and Association with the Vasculature“. Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1409665728.
Der volle Inhalt der QuelleBücher zum Thema "Blood-brain barrier Physiology"
Couraud, Pierre-Olivier, und Daniel Scherman, Hrsg. Biology and Physiology of the Blood-Brain Barrier. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2.
Der volle Inhalt der QuelleBradbury, Michael W. B., Hrsg. Physiology and Pharmacology of the Blood-Brain Barrier. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76894-1.
Der volle Inhalt der QuelleDavson, Hugh. Physiology of the CSF and blood-brain barriers. Boca Raton: CRC Press, 1996.
Den vollen Inhalt der Quelle findenV, Zlokovic B., Hrsg. The blood-brain barrier, amino acids, and peptides. Dordrecht: Kluwer Academic Publishers, 1990.
Den vollen Inhalt der Quelle findenMolecular physiology and metabolism of the nervous system: A clinical perspective. New York: Oxford University Press, 2012.
Den vollen Inhalt der Quelle findenNATO Advanced Research Workshop on Regulatory Mechanisms of Neuron to Vessel Communication in the Brain. Regulatory mechanisms of neuron to vessel communication in the brain. Berlin: Springer-Verlag, 1989.
Den vollen Inhalt der Quelle findenHammarlund-Udenaes, Margareta, Elizabeth C. M. de Lange und Robert G. Thorne. Drug delivery to the brain: Physiological concepts, methodologies, and approaches. Herausgegeben von American Association of Pharmaceutical Scientists. New York: AAPS Press, 2014.
Den vollen Inhalt der Quelle findenG, De Boer A., Hrsg. Drug tranport(ers) and the diseased brain: Proceedings of the Esteve Foundation Symposium 11, held between 6 and 9 October 2004, S'Agaró (Girona), Spain. Amsterdam, Netherlands: Elsevier, 2005.
Den vollen Inhalt der Quelle findenC, Porter John, Ježová Daniela und International Congress of Physiological Sciences (31st : 1989 : Helsinki, Finland), Hrsg. Circulating regulatory factors and neuroendocrine function. New York: Plenum Press, 1990.
Den vollen Inhalt der Quelle findenPeptide drug delivery to the brain. New York: Raven Press, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Blood-brain barrier Physiology"
Dehouck, M. P., B. Dehouck, L. Fenart und R. Cecchelli. „Blood-Brain Barrier in Vitro“. In Biology and Physiology of the Blood-Brain Barrier, 143–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2_23.
Der volle Inhalt der QuelleGjedde, A. „Blood-Brain Glucose Transfer“. In Physiology and Pharmacology of the Blood-Brain Barrier, 65–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76894-1_4.
Der volle Inhalt der QuelleAbbott, N. Joan. „The Bipolar Astrocyte: Polarized Features of Astrocytic Glia Underlying Physiology, with Particular Reference to the Blood-Brain Barrier“. In Blood-Brain Barriers, 189–208. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. http://dx.doi.org/10.1002/9783527611225.ch8.
Der volle Inhalt der QuelleAbbott, N. J. „Comparative Physiology of the Blood-Brain Barrier“. In Physiology and Pharmacology of the Blood-Brain Barrier, 371–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76894-1_15.
Der volle Inhalt der QuelleJohansson, Barbro B. „The Physiology of the Blood-Brain Barrier“. In Advances in Experimental Medicine and Biology, 25–39. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5799-5_2.
Der volle Inhalt der QuelleBegley, D. J. „Peptides and the Blood-Brain Barrier“. In Physiology and Pharmacology of the Blood-Brain Barrier, 151–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76894-1_6.
Der volle Inhalt der QuelleKeep, Richard F., Jianming Xiang und A. Lorris Betz. „The Blood-Brain Barrier, Potassium, and Brain Growth“. In Biology and Physiology of the Blood-Brain Barrier, 47–50. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2_9.
Der volle Inhalt der QuelleKam, Peter, Ian Power, Michael J. Cousins und Philip J. Siddal. „Blood–Brain Barrier and Cerebrospinal Fluid (CSF)“. In Principles of Physiology for the Anaesthetist, 35–38. Fourth edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429288210-5.
Der volle Inhalt der QuelleMale, D. K. „Immunology of Brain Endothelium and the Blood-Brain Barrier“. In Physiology and Pharmacology of the Blood-Brain Barrier, 397–415. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76894-1_16.
Der volle Inhalt der QuelleKeep, Richard F., Walter Stummer, Jianming Xiang und A. Lorris Betz. „Blood-Brain Barrier Taurine Transport and Brain Volume Regulation“. In Biology and Physiology of the Blood-Brain Barrier, 11–16. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2_3.
Der volle Inhalt der Quelle