Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bipartite Helly graphs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bipartite Helly graphs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bipartite Helly graphs"
Eguia, Martiniano, und Francisco Juan Soulignac. „Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration“. Discrete Mathematics & Theoretical Computer Science Vol. 15 no. 1, Graph and Algorithms (10.02.2013). http://dx.doi.org/10.46298/dmtcs.626.
Der volle Inhalt der QuelleBulavka, Denys, Martin Tancer und Mykhaylo Tyomkyn. „Weak Saturation of Multipartite Hypergraphs“. Combinatorica, 27.07.2023. http://dx.doi.org/10.1007/s00493-023-00049-0.
Der volle Inhalt der QuelleDalfó, Cristina, Clemens Huemer und Julián Salas. „The Degree/Diameter Problem in Maximal Planar Bipartite graphs“. Electronic Journal of Combinatorics 23, Nr. 1 (18.03.2016). http://dx.doi.org/10.37236/4468.
Der volle Inhalt der QuelleDissertationen zum Thema "Bipartite Helly graphs"
Bénéteau, Laurine. „Médians de graphes : algorithmes, connexité et axiomatique“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0512.
Der volle Inhalt der QuelleThe median problem is one of the most investigated problem in metric graph theory. We will start by studying this problem in median graphs. We present a linear time algorithm based on the majority rule which characterize the median in median graphs and on a fast computation of the parallelism classes of the edges (the \Theta-classes) via LexBFS which is a particular breadth first search algorithm.We also provide linear time algorithms to compute the median set in the l_1-cube complexes of median graphs and in event structures. Then, we provide a characterization of the graphs with connected medians in the pth power of the graph and provide a polynomial method to check if a graph is a G^p-connected median graph, extending a result of Bandelt and Chepoi (case p=1). We use this characterization to prove that some important graph classes in metric graph theory have G2-connected medians, such as bipartite Helly graphs and bridged graphs. We will also studied the axiomatic aspect of the median function by investigating the ABC-problem, which determine the graphs (named ABC-graphs) in which the median function is the only consensus function verifying three simples axioms (A) Anonymat, (B) Betweeness and (C) Consistency. We show that modular graphs with G2-connected medians are ABC-graphs and define new axioms allowing us to characterize the median function on some graph classes. For example the graphs with connected medians (including Helly graphs). We also show that a known class of ABC-graphs (graphs satisfying the pairing property) is a proper subclass of bipartite Helly graphs and we investigate their recognition
Konferenzberichte zum Thema "Bipartite Helly graphs"
Kolberg, Fabricio Schiavon, Marina Groshaus, André Luiz Pires Guedes und Renato Carmo. „Results on Circular-Arc Bigraphs“. In I Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2016.9846.
Der volle Inhalt der Quelle