Zeitschriftenartikel zum Thema „Biosynthesis of ginsenosides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Biosynthesis of ginsenosides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Jin, Shi Kun, und Shou Jing Zhao. „Progress in Understanding of the Key Enzyme Genes of Ginsenoside Biosynthesis in Panax ginseng“. Advanced Materials Research 773 (September 2013): 374–79. http://dx.doi.org/10.4028/www.scientific.net/amr.773.374.
Der volle Inhalt der QuelleZhang, Ru, Shiquan Tan, Bianling Zhang, Pengcheng Hu und Ling Li. „Cerium-Promoted Ginsenosides Accumulation by Regulating Endogenous Methyl Jasmonate Biosynthesis in Hairy Roots of Panax ginseng“. Molecules 26, Nr. 18 (16.09.2021): 5623. http://dx.doi.org/10.3390/molecules26185623.
Der volle Inhalt der QuelleChu, Luan Luong, Nguyen Quang Huy und Nguyen Huu Tung. „Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives“. Molecules 28, Nr. 3 (02.02.2023): 1437. http://dx.doi.org/10.3390/molecules28031437.
Der volle Inhalt der QuelleChen, Hong, Xiangzhu Li, Yongjun Zheng, Mingming Liu und Kangyu Wang. „Effects of Different Culture Times Genes Expression on Ginsenoside Biosynthesis of the Ginseng Adventitious Roots in Panax ginseng“. Horticulturae 9, Nr. 7 (01.07.2023): 762. http://dx.doi.org/10.3390/horticulturae9070762.
Der volle Inhalt der QuelleLu, Jing. „Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants“. Life 13, Nr. 11 (19.11.2023): 2227. http://dx.doi.org/10.3390/life13112227.
Der volle Inhalt der QuelleLe, Kim-Cuong, Thanh-Tam Ho, Jong-Du Lee, Kee-Yoeup Paek und So-Young Park. „Colchicine Mutagenesis from Long-term Cultured Adventitious Roots Increases Biomass and Ginsenoside Production in Wild Ginseng (Panax ginseng Mayer)“. Agronomy 10, Nr. 6 (31.05.2020): 785. http://dx.doi.org/10.3390/agronomy10060785.
Der volle Inhalt der QuelleJiang, Yang, Qi Zhang, Zixia Zeng, Yi Wang, Mingzhu Zhao, Kangyu Wang und Meiping Zhang. „The AP2/ERF Transcription Factor PgERF120 Regulates Ginsenoside Biosynthesis in Ginseng“. Biomolecules 14, Nr. 3 (13.03.2024): 345. http://dx.doi.org/10.3390/biom14030345.
Der volle Inhalt der QuelleKochan, Ewa, Sylwia Caban, Grażyna Szymańska, Piotr Szymczyk, Anna Lipert, Paweł Kwiatkowski und Monika Sienkiewicz. „Influence of methyl jasmonate on ginsenoside biosynthesis in suspension cultures of Panax quinquefolium L.“ Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia 72, Nr. 1 (16.07.2018): 27. http://dx.doi.org/10.17951/c.2017.72.1.27-35.
Der volle Inhalt der QuelleZhang, Tao, Mei Han, Limin Yang, Zhongming Han, Lin Cheng, Zhuo Sun und Linlin Yang. „The Effects of Environmental Factors on Ginsenoside Biosynthetic Enzyme Gene Expression and Saponin Abundance“. Molecules 24, Nr. 1 (20.12.2018): 14. http://dx.doi.org/10.3390/molecules24010014.
Der volle Inhalt der QuelleZhou, Chen, Ting Gong, Jingjing Chen, Tianjiao Chen, Jinling Yang und Ping Zhu. „Production of a Novel Protopanaxatriol-Type Ginsenoside by Yeast Cell Factories“. Bioengineering 10, Nr. 4 (11.04.2023): 463. http://dx.doi.org/10.3390/bioengineering10040463.
Der volle Inhalt der QuelleKim, Yu-Jin, Dabing Zhang und Deok-Chun Yang. „Biosynthesis and biotechnological production of ginsenosides“. Biotechnology Advances 33, Nr. 6 (November 2015): 717–35. http://dx.doi.org/10.1016/j.biotechadv.2015.03.001.
Der volle Inhalt der QuelleZou, Xian, Yue Zhang, Xu Zeng, Tuo Liu, Gui Li, Yuxin Dai, Yuanzhu Xie und Zhiyong Luo. „Molecular Cloning and Identification of NADPH Cytochrome P450 Reductase from Panax ginseng“. Molecules 26, Nr. 21 (03.11.2021): 6654. http://dx.doi.org/10.3390/molecules26216654.
Der volle Inhalt der QuelleGiang, Nguyen Van, Luu Han Ly, Pham Le Bich Hang und Le Thi Thu Hien. „Isolation and characterization of a gene encoding farnesyl diphosphate synthase from \(\textit{Panax vietnamensis}\) Ha et Grushv“. Academia Journal of Biology 43, Nr. 4 (30.12.2021): 119–28. http://dx.doi.org/10.15625/2615-9023/16356.
Der volle Inhalt der QuellePanossian, Alexander, Sara Abdelfatah und Thomas Efferth. „Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations“. Pharmaceuticals 14, Nr. 10 (29.09.2021): 999. http://dx.doi.org/10.3390/ph14100999.
Der volle Inhalt der QuelleHu, Wei, Ning Liu, Yuhua Tian und Lianxue Zhang. „Molecular Cloning, Expression, Purification, and Functional Characterization of Dammarenediol Synthase fromPanax ginseng“. BioMed Research International 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/285740.
Der volle Inhalt der QuelleLiu, Chang, Kangyu Wang, Ziyi Yun, Wenbo Liu, Mingzhu Zhao, Yanfang Wang, Jian Hu et al. „Functional Study of PgGRAS68-01 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng“. International Journal of Molecular Sciences 24, Nr. 4 (08.02.2023): 3347. http://dx.doi.org/10.3390/ijms24043347.
Der volle Inhalt der QuelleJiang, Yue, Sizhang Liu, Li Li, Kaiyou Zang, Yanfang Wang, Mingzhu Zhao, Kangyu Wang et al. „Transcriptome and Phenotype Integrated Analysis Identifies Genes Controlling Ginsenoside Rb1 Biosynthesis and Reveals Their Interactions in the Process in Panax ginseng“. International Journal of Molecular Sciences 23, Nr. 22 (13.11.2022): 14016. http://dx.doi.org/10.3390/ijms232214016.
Der volle Inhalt der QuelleKong, Lingyao, Peng Chen und Cheng Chang. „Drought Resistance and Ginsenosides Biosynthesis in Response to Abscisic Acid in Panax ginseng C. A. Meyer“. International Journal of Molecular Sciences 24, Nr. 11 (24.05.2023): 9194. http://dx.doi.org/10.3390/ijms24119194.
Der volle Inhalt der QuelleZhang, Qiang, Xude Wang, Liyan Lv, Guangyue Su und Yuqing Zhao. „Antineoplastic Activity, Structural Modification, Synthesis and Structure-activity Relationship of Dammarane-type Ginsenosides: An Overview“. Current Organic Chemistry 23, Nr. 5 (01.07.2019): 503–16. http://dx.doi.org/10.2174/1385272823666190401141138.
Der volle Inhalt der Quelle刘, 佳. „Advances in the Biosynthesis Research of Ginsenosides and Key Enzymes“. Botanical Research 03, Nr. 03 (2014): 84–90. http://dx.doi.org/10.12677/br.2014.33013.
Der volle Inhalt der QuelleKochan, Ewa, Monika Sienkiewicz, Dagmara Szmajda-Krygier, Ewa Balcerczak und Grażyna Szymańska. „Carvacrol as a Stimulant of the Expression of Key Genes of the Ginsenoside Biosynthesis Pathway and Its Effect on the Production of Ginseng Saponins in Panax quinquefolium Hairy Root Cultures“. International Journal of Molecular Sciences 25, Nr. 2 (11.01.2024): 909. http://dx.doi.org/10.3390/ijms25020909.
Der volle Inhalt der QuelleTrinh, Vu Thi, Luu Han Ly, Huynh Thi Thu Hue und Le Thi Thu Hien. „Isolation, sequencing and expression of the gene encoding acetoacetyl-coa thiolase from Panax vietnamensis Ha et Grushv.“ Vietnam Journal of Biotechnology 19, Nr. 1 (18.07.2021): 107–17. http://dx.doi.org/10.15625/1811-4989/16084.
Der volle Inhalt der QuelleAlcalde, Miguel Angel, Edgar Perez-Matas, Ainoa Escrich, Rosa M. Cusido, Javier Palazon und Mercedes Bonfill. „Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022“. Molecules 27, Nr. 16 (17.08.2022): 5253. http://dx.doi.org/10.3390/molecules27165253.
Der volle Inhalt der QuelleZhu, Lei, Jian Hu, Ruiqi Li, Chang Liu, Yang Jiang, Tao Liu, Mingming Liu et al. „Transcriptome-Wide Integrated Analysis of the PgGT25-04 Gene in Controlling Ginsenoside Biosynthesis in Panax ginseng“. Plants 12, Nr. 10 (15.05.2023): 1980. http://dx.doi.org/10.3390/plants12101980.
Der volle Inhalt der QuelleKim, Dongmin, Mihyang Kim, Gem Raña und Jaehong Han. „Seasonal Variation and Possible Biosynthetic Pathway of Ginsenosides in Korean Ginseng Panax ginseng Meyer“. Molecules 23, Nr. 7 (23.07.2018): 1824. http://dx.doi.org/10.3390/molecules23071824.
Der volle Inhalt der QuelleKochan, Ewa, Ewa Balcerczak, Piotr Szymczyk, Monika Sienkiewicz, Hanna Zielińska-Bliźniewska und Grażyna Szymańska. „Abscisic Acid Regulates the 3-Hydroxy-3-methylglutaryl CoA Reductase Gene Promoter and Ginsenoside Production in Panax quinquefolium Hairy Root Cultures“. International Journal of Molecular Sciences 20, Nr. 6 (15.03.2019): 1310. http://dx.doi.org/10.3390/ijms20061310.
Der volle Inhalt der QuelleJin, Shi Kun, und Shou Jing Zhao. „Recent Advances in Study of Ginsenoside Biosynthetic Pathway in Panax ginseng“. Advanced Materials Research 773 (September 2013): 368–73. http://dx.doi.org/10.4028/www.scientific.net/amr.773.368.
Der volle Inhalt der QuelleZhang, Jing-Jing, He Su, Lei Zhang, Bao-Sheng Liao, Shui-Ming Xiao, Lin-Lin Dong, Zhi-Gang Hu et al. „Comprehensive Characterization for Ginsenosides Biosynthesis in Ginseng Root by Integration Analysis of Chemical and Transcriptome“. Molecules 22, Nr. 6 (31.05.2017): 889. http://dx.doi.org/10.3390/molecules22060889.
Der volle Inhalt der QuelleKim, Dongmin, und Jaehong Han. „Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis“. Journal of Applied Biological Chemistry 62, Nr. 4 (31.12.2019): 315–22. http://dx.doi.org/10.3839/jabc.2019.043.
Der volle Inhalt der QuelleLi, Jinxin, Hongfa Li, Dahui Liu, Shujie Liu, Jianli Li und Juan Wang. „Analysis of ginsenoside content, functional genes involved in ginsenosides biosynthesis, and activities of antioxidant enzymes in Panax quinquefolium L. adventitious roots by fungal elicitors“. Research on Chemical Intermediates 43, Nr. 4 (17.10.2016): 2415–32. http://dx.doi.org/10.1007/s11164-016-2770-x.
Der volle Inhalt der QuelleWU, Wen-Ru, Chun-Song CHENG, Qi-Qing CHENG, Chi-Chou LAO, Hao CUI, Zi-Yu TANG, Yue OUYANG, Liang LIU und Hua ZHOU. „Novel SNP markers on ginsenosides biosynthesis functional gene for authentication of ginseng herbs and commercial products“. Chinese Journal of Natural Medicines 18, Nr. 10 (Oktober 2020): 770–78. http://dx.doi.org/10.1016/s1875-5364(20)60017-6.
Der volle Inhalt der QuelleScossa, Federico, Maria Benina, Saleh Alseekh, Youjun Zhang und Alisdair Fernie. „The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants“. Planta Medica 84, Nr. 12/13 (29.05.2018): 855–73. http://dx.doi.org/10.1055/a-0630-1899.
Der volle Inhalt der QuelleZhang, Guang-Hui, Chun-Hua Ma, Jia-Jin Zhang, Jun-Wen Chen, Qing-Yan Tang, Mu-Han He, Xiang-Zeng Xu, Ni-Hao Jiang und Sheng-Chao Yang. „Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers“. BMC Genomics 16, Nr. 1 (2015): 159. http://dx.doi.org/10.1186/s12864-015-1332-8.
Der volle Inhalt der QuelleLinsefors, Lotta, Lars Björk und Klaus Mosbach. „Influence of Elicitors and Mevalonic Acid on the Biosynthesis of Ginsenosides in Tissue Cultures of Panax ginseng“. Biochemie und Physiologie der Pflanzen 184, Nr. 5-6 (Januar 1989): 413–18. http://dx.doi.org/10.1016/s0015-3796(89)80039-3.
Der volle Inhalt der QuelleWang, Shi-hui, Wen-xia Liang, Jun Lu, Lu Yao, Juan Wang und Wen-yuan Gao. „Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses“. Chinese Herbal Medicines 12, Nr. 3 (Juli 2020): 257–64. http://dx.doi.org/10.1016/j.chmed.2020.02.003.
Der volle Inhalt der QuelleKim, Su-Jin, Hyun-Ja Jeong, Byoung-Jae Yi, Tae-Hee Kang, Nyeon-Hyung An, Eun-Hyub Lee, Deok-Chun Yang, Hyung-Min Kim, Seung-Heon Hong und Jae-Young Um. „Transgenic Panax ginseng Inhibits the Production of TNF-α, IL-6, and IL-8 as well as COX-2 Expression in Human Mast Cells“. American Journal of Chinese Medicine 35, Nr. 02 (Januar 2007): 329–39. http://dx.doi.org/10.1142/s0192415x07004850.
Der volle Inhalt der QuelleWang, Shihui, Wenxia Liang, Lu Yao, Juan Wang und Wenyuan Gao. „Effect of temperature on morphology, ginsenosides biosynthesis, functional genes, and transcriptional factors expression in Panax ginseng adventitious roots“. Journal of Food Biochemistry 43, Nr. 4 (Februar 2019): e12794. http://dx.doi.org/10.1111/jfbc.12794.
Der volle Inhalt der QuelleYu, Lu, Yuan Chen, Jie Shi, Rufeng Wang, Yingbo Yang, Li Yang, Shujuan Zhao und Zhengtao Wang. „Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes“. Journal of Ginseng Research 43, Nr. 1 (Januar 2019): 116–24. http://dx.doi.org/10.1016/j.jgr.2017.09.005.
Der volle Inhalt der QuelleTang, Qing-Yan, Geng Chen, Wan-Ling Song, Wei Fan, Kun-Hua Wei, Si-Mei He, Guang-Hui Zhang et al. „Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides“. Planta 249, Nr. 2 (15.09.2018): 393–406. http://dx.doi.org/10.1007/s00425-018-2995-6.
Der volle Inhalt der QuelleMa, Rui, Rui Jiang, Xuenan Chen, Daqing Zhao, Tong Li und Liwei Sun. „Proteomics analyses revealed the reduction of carbon- and nitrogen-metabolism and ginsenoside biosynthesis in the red-skin disorder of Panax ginseng“. Functional Plant Biology 46, Nr. 12 (2019): 1123. http://dx.doi.org/10.1071/fp18269.
Der volle Inhalt der QuelleWu, Qiong, Jingyuan Song, Yongqiao Sun, Fengmei Suo, Chenji Li, Hongmei Luo, Ying Liu et al. „Transcript profiles ofPanax quinquefoliusfrom flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation“. Physiologia Plantarum 138, Nr. 2 (Februar 2010): 134–49. http://dx.doi.org/10.1111/j.1399-3054.2009.01309.x.
Der volle Inhalt der QuelleLu, Jun, Lu Yao, Jin-Xin Li, Shu-Jie Liu, Yan-Ying Hu, Shi-Hui Wang, Wen-Xia Liang et al. „Characterization of UDP-Glycosyltransferase Involved in Biosynthesis of Ginsenosides Rg1 and Rb1 and Identification of Critical Conserved Amino Acid Residues for Its Function“. Journal of Agricultural and Food Chemistry 66, Nr. 36 (10.08.2018): 9446–55. http://dx.doi.org/10.1021/acs.jafc.8b02544.
Der volle Inhalt der QuelleChoi, Dong-Woog, JongDuk Jung, Young Im Ha, Hyun-Woo Park, Dong Su In, Hwa-Jee Chung und Jang Ryol Liu. „Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites“. Plant Cell Reports 23, Nr. 8 (05.11.2004): 557–66. http://dx.doi.org/10.1007/s00299-004-0845-4.
Der volle Inhalt der QuelleZhang, He, Xin Hua, Dongran Zheng, Hao Wu, Chuanwang Li, Pan Rao, Mengliang Wen et al. „De Novo Biosynthesis of Oleanane-Type Ginsenosides in Saccharomyces cerevisiae Using Two Types of Glycosyltransferases from Panax ginseng“. Journal of Agricultural and Food Chemistry 70, Nr. 7 (11.02.2022): 2231–40. http://dx.doi.org/10.1021/acs.jafc.1c07526.
Der volle Inhalt der QuelleLi, Jinxin, Shujie Liu, Juan Wang, Jing Li, Dahui Liu, Jianli Li und Wenyuan Gao. „Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey“. Journal of Biotechnology 239 (Dezember 2016): 106–14. http://dx.doi.org/10.1016/j.jbiotec.2016.10.011.
Der volle Inhalt der QuelleWang, Qiuguo, Siqi Yan, Xiaoran Zhou, Huiling Mei, Yu Xiang, Bin Fang, Leilei Zhang, Yu Hu und Qiuguo Wang. „20(S)-Protopanaxatriol Promotes Fatty Acid-Induced ER Stress and Apoptosis in Multiple Myeloma By Down-Regulating SCD1 Expression“. Blood 132, Supplement 1 (29.11.2018): 3219. http://dx.doi.org/10.1182/blood-2018-99-118181.
Der volle Inhalt der QuelleWu, Fulin, Sihan Lai, Hao Feng, Juntong Liu, Dongxing Fu, Caixia Wang, Cuizhu Wang, Jinping Liu, Zhuo Li und Pingya Li. „Protective Effects of Protopanaxatriol Saponins on Ulcerative Colitis in Mouse Based on UPLC-Q/TOF-MS Serum and Colon Metabolomics“. Molecules 27, Nr. 23 (30.11.2022): 8346. http://dx.doi.org/10.3390/molecules27238346.
Der volle Inhalt der QuelleDi, Ping, Zhuo Sun, Lin Cheng, Mei Han, Li Yang und Limin Yang. „LED Light Irradiations Differentially Affect the Physiological Characteristics, Ginsenoside Content, and Expressions of Ginsenoside Biosynthetic Pathway Genes in Panax ginseng“. Agriculture 13, Nr. 4 (31.03.2023): 807. http://dx.doi.org/10.3390/agriculture13040807.
Der volle Inhalt der QuelleYu, Xiaochen, Jinghui Yu, Sizhang Liu, Mingming Liu, Kangyu Wang, Mingzhu Zhao, Yanfang Wang et al. „Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng“. Plants 13, Nr. 5 (23.02.2024): 604. http://dx.doi.org/10.3390/plants13050604.
Der volle Inhalt der QuelleChu, Jianlin, Jiheng Yue, Song Qin, Yuqiang Li, Bin Wu und Bingfang He. „Biocatalysis for Rare Ginsenoside Rh2 Production in High Level with Co-Immobilized UDP-Glycosyltransferase Bs-YjiC Mutant and Sucrose Synthase AtSuSy“. Catalysts 11, Nr. 1 (18.01.2021): 132. http://dx.doi.org/10.3390/catal11010132.
Der volle Inhalt der Quelle