Dissertationen zum Thema „Biopolymères – Surfaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-17 Dissertationen für die Forschung zum Thema "Biopolymères – Surfaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bedoin, Lise. „Emergence de biopolymères de complexite contrôlée dans les scénarios d'origine de la vie“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS229.
Der volle Inhalt der QuelleLiving matter is characterized by the presence of non-random biopolymers whose biological function depends on the monomer sequence. Thus, a major challenge for the elucidation of the Origins of Life lies in understanding how non-random polypeptides were formed and selected among all of the possible ones. In this work, analytical approaches based essentially on ultra-high resolution mass spectrometry were applied to the global analysis of desorption mixtures resulting from the thermal activation of amino acids on a mineral surface, under conditions compatible with a prebiotic scenario. The formation of relatively long oligopeptides, with non-random stoichiometries has been shown. It appears that the formation of hetero-peptides is favored. A structural study of the oligopeptides formed was also carried out by tandem mass spectrometry, optionally coupled with liquid chromatography or ion mobility. It made it possible to demonstrate sequence selectivity. Furthermore, the formation of regio-isomers has been demonstrated, confirming that under our polymerization conditions the scenario does not manifest regioselectivity for the predominant α bonds in proteins. Finally, no significant enantioselectivity was demonstrated. In addition, a mechanistic study of the condensation reaction was carried out. The successive appearance of oligopeptides of increased length has been observed over ranges of temperatures or reaction times, suggesting stepwise polymerization processes
Menard, Virginie. „Polymères biospécifiques : Elimination des facteurs activés de mélanges prothrombiniques : Interactions des facteurs vitamin-K dépendants avec des dérivés « phospholipid-like »“. Paris 13, 1992. http://www.theses.fr/1992PA132036.
Der volle Inhalt der QuelleLabache, Gaëlle. „Amélioration par modification chimique de l’interface de biocomposites poly(acide lactique) – fibre courtes de lin“. Caen, 2012. http://www.theses.fr/2012CAEN2004.
Der volle Inhalt der QuelleThis project is focused on the identification of chemical modifications to improve the interface quality of biocomposites elaborated from biopolymers and natural cellulosic fibers. The poly(lactic acid) matrix chosen for the project is presented in the first part with a special attention concerning the physical aging. The evolution of thermal (DSC) and mechanical properties (tensile testing) of PLA samples depending on the storage temperature highlight strengthening and weakening of PLA with storage time. This study demonstrates the necessity to clearfully expose the experimental procedures to measure these values. The influence of various surface treatments on the morphology and on the spectroscopic properties of flax fibers has been evaluated. Mercerisation and bleaching lead to the removal of waxes, pectins and hemicelluloses and reveal the cellulosic wall of the fibres. Coupled with acetylation, different satisfiying grafting ratio are obtained. However, the interfacial adhesion is not improved by the modified fibers in the pure PLA matrix through extrusion and injection molding. A second route by matrix chemical modification via reactive extrusion has thus been developped. Cardanol grafting onto PLA chains with the help of peroxides did not lead to the improvement of the interface quality. On the other hand, the addition of diisocyanates to the PLA-fibers systems significantly increases the adhesion between the matrix and the fibers. The obtained composites are more resistant than the pure PLA matrix. The reaction mechanism involves the creation of covalent bondings between the PLA and the flax fibers via the bifunctionnal diisocyanate
Blin, Thomas. „Elaboration de revêtements macromoléculaires antibiofilms à base de peptides antibactériens“. Rouen, 2011. http://www.theses.fr/2011ROUES023.
Der volle Inhalt der QuelleFrom a medical and economical point of view, biofilms have important negative impacts. Various approaches based on the immobilization of bactericidal substances have been developed to prevent biofilm formation on materials surfaces. However, they are not fully satisfying due to limited efficiency, toxicity, or emergence of multiresisting bacteria. Compared to these synthetic approaches, some living organisms have developed highly efficient strategies tested over eons to eliminate the microbial adhesion. For instance, amphibians excrete an epidermal mucus containing antibacterial peptides. Considering this last example, we synthesized various coatings based on hydrophilic and flexible macromolecules grafted by antibacterial peptides. First of all, copolymer brushes based on oligo(ethylene glycol) methacrylates were polymerized by ATRP from planar substrates and afterwards grafted by temporin‐1Va or magainin‐1 derivatives. This strategy was subsequently successfully adapted on microparticles and on thermoresponsive polymer rushes leading to thin films showing a modulation of their bactericidal properties with emperature. Moreover, polysaccharide layers were immobilized on gold surfaces, then rafted by magainin‐1. The microstructure of these layers was tuned to optimize the accessibility of the grafted peptide. The resulting coatings showed a high activity against various bacterial strains. This work paves the way to the development of new coatings fighting biofilms, notably for (bio)medical devices
Guennec, Alexandra Morgane. „Biopolymère amphiphile pour surface antibiofilm“. Electronic Thesis or Diss., Lorient, 2022. http://www.theses.fr/2022LORIS636.
Der volle Inhalt der QuelleThe development of biofilms causes serious problems in the marine and medical fields. Their high tolerance to commonly used chemical agents’ disinfectants, antibiotics, biocides) makes their eradication difficult. Moreover, the use of biocide molecules is widely controversial, considering their catastrophic environmental impact. Research has therefore focused on systems that, by their composition, limit biocontamination. Among them are amphiphilic systems that can be composed of a hydrophobic polydimethylsiloxane (PDMS) matrix and an amphiphilic PDMS-PEG copolymer. Despite their efficiency, these systems are questioned because of the petrochemical origin of PDMS. The objective of this thesis project is to substitute PDMS with a biopolymer, poly(hydroxyalkanoate) (PHA). A system was formulated with PHA as a hydrophobic matrix and a PHA-PEG copolymer as an amphiphilic additive. Two types of PHA were used in this study, PHBHV (short chain length) and PHAmcl (medium chain length). The formulated coatings were characterized physically, chemically and mechanically. Then their anti-adhesive, anti-biofilm and fouling-release capacities were evaluated on different microorganisms. Two opportunistic pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, a marine bacterium, Bacillus 4J6 and two benthic diatoms, Phaeodactylum tricornutum and Navicula perminuta. Finally, in order to better understand the molecular mechanisms involved in the adhesion of S. aureus, transcriptomic analyses were performed
Lao, Hoi Kuan. „Modification de biopolymère pour l'étude des interactions bactéries - surface abiotique“. Lorient, 2009. http://www.theses.fr/2009LORIS144.
Der volle Inhalt der QuelleThe goal ofthis present work was to develop a polymer promoting the adhesion and the development ofa mature biofilm. The main application was intend to bioreactor and to maintain their efficiency. These surfaces were made by grafting various chemical functions by polymerizing different vinyl monomers (HEMA, AAC, DMAEMA) on the surface ofa biopolyester the poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV). Bacterial adhesion and biofilm development were tested on these different surfaces. Three routes of chemical radical grafting were carried out to immobilize the hydrophilic functions. Radical grafting were experimented by thennal initiation, photo initiation and a new approach by control radical polymerization the SI-A TRP. The grafted films were characterized by a large range of surface analysis such as scanning electon microscopy (SEM) associated with energy dispersive X-ray analysis (EDX), contact angle measurement, A TR-FTIR. These characterization techniques showed that depending on the grafting route the grafted chains were localized in different part of the PHBHV film. Evaluation of the bacterial adhesion and the biofilm fonnation were realized oflow graft yield to keep the biodegradation property of the PHBHV. The bacteria-surface study was followed by con focal laser scannin microscopy (CLSM)
Debons, Nicolas. „Biocomposite materials : multi-scale structuration of collagen and bio-functional silica nanoparticle“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS065.
Der volle Inhalt der QuelleThis work has been devoted to the design and synthesis of tunable biomaterials for tissue engineering. We have developed three types of collagen-based biocomposites, as filaments or self-supported membranes with fibers aligned or not. The host matrix is constituted by collagen, the main biopolymer in connective tissues, which naturally provides suitable structural environment to the cells together with intrinsic biochemical signals. Moreover, bio-functionalized silica nanoparticles (SiNPs) were added as multifunctional platforms to further modulate the inner topology of the composite scaffold and/or exhibit bioactive ligands. This bionanocomposite approach aimed at presenting at best structural and/or functional cues for enhanced cell bioactivity. The final goal of our studies was to find the ideal molecular organization in order to create a synergy between structure and function. To do so, we have developed a multi-scale approach, from SiNP surface engineering to the modulation of cell-biomaterial interactions, by way of collagen hierarchical self-assembly to a biomimetic extracellular matrix. SiNP surface engineering proved to be at the basis of biomaterials modularity. In the context of SiNPs presenting functional domains, we also focused on the nanoscale structuration of SiNP surface. To this aim, we developed a gold-tag spatial characterization technique with carboxylate-modified gold colloids in order to reach a high degree of spatial resolution
Auduc, Boyer Nathalie. „Elaboration et caractérisation de films Langmuir-Blodgett de polyaminoacides par analyses de surface“. Lyon 1, 1994. http://www.theses.fr/1994LYO19009.
Der volle Inhalt der QuelleDhez, Anne-Chloé. „Thérapie ciblée des glioblastomes via l'internalisation d'une toxine grâce à des biopolymères dirigés à la surface des cellules cancéreuses“. Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC0026/document.
Der volle Inhalt der QuelleTargeted cancer therapies are drugs designed to interfere with specific molecules necessary for tumor growth and progression. Traditional cytotoxic chemotherapies usually kill rapidly dividing cells in the body by interfering with cell division. A primary goal of targeted therapies is to fight cancer cells with more precision and potentially fewer side effects.Antibody-based therapy for cancer has become established over the past 15 years and is now one of the most successful and important targeted strategies. In some cases, monoclonal antibodies are conjugated to radio-isotopes or toxins (immunotoxin) to allow specific delivery of these cytotoxic agents to the intended cancer cell target. Furthermore thargeted therapies may be based also on the use of targeting molecues other than antibodies, such as peptides, growth factors, and also nucleic acids.Indeed, in this work we studyed a multi targeting strategy to deliver toxic substances (protein toxin or its gene) to cancer cells (glioblastoma).Our group published a paper describing the use of PDZ protein domain of hCASK (serine kinase calcium/calmodulin-dependent of MAGUK family) and to exploit the ability of this protein to bind to the C-terminus of hCD98 in the extracellular space. CD98 is an interesting target because it is overexpressed in different types of tumors (Giansanti F., 2015). hCASK-PDZ was genetically fused to the toxin saporin and this chimeric toxin proved to be active on glioblastoma cells in vitro.Other cell killing agents were designed to recognize and bind specifically nucleolin (NCL). This multifunctional protein is overexpressed on the surface of activated endothelial and tumor cells. In this context, compounds targeting NCL, such an aptamer, and a multivalent pseudopeptide, have been developed and investigated for cancer therapy.The aptamer against NCL, NCL-APT also known as AS1411 (Antisoma, UK), is a US Food and Drug Administration (FDA)-approved NCL targeting agent. It binds to NCL on the cell surface, preferentially gets internalized, and inhibits cancer cell growth sparing normal cells (Bates PJ, 2009).In parallel, our group, recently developed a multivalent synthetic pseudopeptide N6L that selectively binds to nucleolin (Destouches D., 2011). N6L strongly inhibits breast cancer growth by inducing apoptosis of tumor cells and is currently in preparation for phase II clinical trials (IPP-204106). We demonstrated the anti-proliferative effect of N6L on human glioblastoma cells in primary culture prepared form post-surgical specimens (Benedetti E, 2015).The overexpression of NCL on glioblastoma cell surface and the recognized selectivity of AS1411 and N6L prompted us to study a way to increase the efficiency of these ligands binding them Saporin coding gene or the protein toxin Saporin-S6, a type 1 RIP (Ribosome-Inactivating Protein) widely studied because of its potential therapeutic application in a variety of human diseases as toxic moiety of a conjugate.The characterization of the toxic activity of AS1411 linked to saporin gene (APT-SAP) and of NCL linked to saporin protein (SAP-N6L) is therefore described. Both these researches are under evaluation for publication.All the described thargeted approaches, nothwithstanding some problems, look promising and need further research, but confirm the fact that exploiting targets to deliver toxic substances is the future of therapy for cancer forms that are difficult to beat with conventional therapies
Hermitte, Laurence. „Corrélation des propriétés physico-chimiques de biopolymères à la réponse cellulaire : Contribution à l'élaboration de nouveaux implants anti-cataracte secondaire“. Ecully, Ecole centrale de Lyon, 2002. http://www.theses.fr/2002ECDL0015.
Der volle Inhalt der QuelleAdhesion and proliferation of lens epithelial cells remaining in the capsular bag after cataract surgery can generate a secondary cataract. This post-operative pathology induces a new loss of visual acuity. Physico-chemical characterisation of synthetic surfaces has shown the existence of properties that discriminate materials having sometimes a quite close chemical structure. An in vitro test, simple and sensitive, has confirmed the influence of the polymer chemical formula on the delay and degree of secondary cataract apparition. Thanks to these complementary studies, we have identified surface parameters that play a major role on biological response : hydrophilic/hydrophobic ratio, electrical properties, and polymeric chain mobility. The correlations found between polymer physico-chemical properties and cell behaviour allowed us to initiale the development of an efficient anti-secondary caratact lens. The first approach consists in the elaboration of an hydrogel containing carboxylates groups. The results have confirmed previously established correlations between dzeta potentiel or hydophilicity and cell response. The second approach is the grafting of HEMA/MAA oligomers on an hydrogel lens. These new prostheses are injectable and combine good mechanical properties and anti-secondary cataract activity
Xu, Zuxiang. „Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS020.
Der volle Inhalt der QuelleWhile the adhesion between synthetic materials has been rather well-studied experimentally and theoretically, there is still a lack of knowledge on bioadhesion, which could be tackled with biopolymer systems which could mimic biosurfaces, biotissues and bioadhesives. However, this idea is limited by the difficulty in designing a model structure and controlling the physical chemistry properties of biopolymer-made materials. Bioadhesion mechanisms can be tackled by studying the underwater adhesion between hydrogel adhesives and solid substrates modified by hydrogel thin films. This allows to separate interfacial contribution with molecular specific interactions and bulk contribution with viscoelastic properties to adhesion. First, a model system based on gelatins has been designed and underwater adhesion promoted by electrostatic interactions was investigated. On one side, stable surface-attached gelatin films with finely adjustable thickness and swelling were achieved using Cross-Linking and Grafting (CLAG) strategy. On the other side, dual-crosslinked gelatin hydrogel adhesives were synthesized by adding chemical crosslinks to physical gelatin networks. The microscopic structure of both physical and chemical crosslinks was well-controlled, with the determination of the chain length between crosslinks from shear modulus and phantom network model. Underwater adhesion measured by probe tack tests showed that dual-crosslinked gelatin hydrogels have the same adhesive properties at all temperatures even if their strength decreases with heating. We were also able to separate the effects of physical and chemical networks on adhesion. Second, the underwater adhesion between double-networks containing carrageenan and solid substrates modified by micro-patterned hydrogels was investigated. It was shown that the smaller the micro-patterns the higher the adhesion energy. This work has provided an insight of the physico-chemical and physical parameters that control underwater adhesion of biopolymers systems such as the bulk viscoelastic properties, the charge and the topography of the surface. It would help for better understanding bioadhesion and designing underwater adhesives
Mitalane-Goulhiane, Jalila. „Les biofilms bactériens : influence des propriétés physico-chimiques de surface sur l'adhésion et détection d'un biopolymère chez Pseudomonas aeruginosa“. Lorient, 2006. http://www.theses.fr/2006LORIS080.
Der volle Inhalt der QuelleBiofilms can be defined as communities of micro organisms attached to a surface and embedded in a protective matrix. Bacterial biofilms are implicated in a significant amount of human infections, fouling, product contamination …. A comprehension of the process of biofilm formation will make it possible to prevent its formation on different surfaces or at least a better control of it. This thesis is divided into two different subjects in connection with biofilm formation. The first goal of this research project was carried out within the framework of the development of new antifouling techniques in seawater. Our work consisted in seeking the parameters influencing the first stages of formation of the biofilm i. E. The adhesion of the bacteria. Experiences were carried out on adherent bacteria on a surface immersed in sea water. We determined three of their surface physico-chemical characters which could be implied in their adhesion. The hydrophobicity of surface, the electrostatic charge and the acid-base character. Although all the bacteria adhered to a hydrophilic surface, they presented at the same time the hydrophilic and hydrophobic character with a preponderance of the hydrophilic character. They all presented an electronegative net charge of the surface at pH of seawater. The majority presented an electron-donating character; some could not generate Lewis acid-base interactions with the support. Consequently, according to these results it seemed very difficult to us to explain the adhesion of the bacteria by the combination of these various physico-chemical properties. Lastly, the development of new antifouling paints should take into account in addition to these surface properties other cellular properties which the bacterium uses for its adhesion on an immersed surface in sea water. The second objective of this thesis is to seek the cellular modifications taking place during their transition from planctonic organisms to surface-attached community. The model bacterium of this research is the wild type PAO1 of Pseudomonas aeruginosa. Analysis were made using matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry on intact bacteria. The result obtained consists in the discovery of new a biopolymer on the surface of this bacterium having a range of mass ranging between 2000 and 8000 g/mol and whose monomer is characterized by a molecular mass of 128. The various tests applied to this biopolymer have leads to a certain number of properties which characterize it. The research of the role of this biopolymer in the formation of the biofilm informed us on its participation in adhesion of the bacteria which synthesize it
Burckbuchler, Virginie. „Nanostructures pour la vectorisation de polymères biologiques“. Paris 12, 2006. http://www.theses.fr/2006PA120034.
Der volle Inhalt der QuelleA new non-viral vector resulting from the assembly between a cyclodextrin polymer (polyβCD)and an amphiphilic cationic connector has been synthesized and characterized. Connectors have a hydrophobic group (cholesterol or adamantane) and differ by the spacer length between the charge valency. Inclusion interactions between polyβCD and connectors have been characterized by fluometric measurements. The polyelectrolyte behaviour and the structure of aggregates have been evaluated by viscosimetry ans small angle neutron scattering. These techniques have demonstrated the formation of the ternary system polyβCD/connector/polyanion by a core-shell association mechanism. Finally, structure/property relationships of the vectors for the DNA compaction and for in vitro transfection efficiency have been clearly demonstrated by complementary techniques (electrophoresis, Raman spectroscopy and zêta potential)
Conzatti, Guillaume. „Biomatériaux pour application chirurgicale : élaboration et fonctionnalisation pour une bioadhésion thermorégulée“. Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30159/document.
Der volle Inhalt der QuellePancreatic surgery, which leads to 5 % of mortality and around 50 % of morbidity, is one of the most critical digestive operations. The most serious complication is the appearance of pancreatic fistulas (PFs), i.e. enzymatic leaks from the surgical sutures to the peritoneal environment that can lead to the life threatening of the patient. To date, no medical device is indicated for the prevention of these FPs. The aim of this project is to design and validate a biomaterial constituted of a matrix that will ensure the dual function of absorbent and antibacterial agent reservoir, on which a chemical grafting should confer thermoregulated bioadhesive properties. The first part of this work is devoted to the optimisation of the absorbent matrix, based on alginate and chitosan, already developed during a previous thesis. Three types of drying processes were compared: drying by evaporation, lyophilisation and drying in supercritical CO2 medium. These different processes led to materials with different internal structures and porosities. The impact of these structures was evaluated in terms of swelling capacity in various media, including a simulated pancreatic environment, but also in terms of enzymatic resistance and release of an active molecule. Taking into account the obtained results, drying by evaporation was identified as the most appropriate process. In a second part, poly (N-isopropylacrylamide) (PNIPAM) was synthesised by controlled polymerisation (RAFT) in order to be grafted onto the absorbent matrix surfaces. PNIPAM is a thermosensitive polymer with bioadhesive properties which depend on the temperature. This polymer is usually bioadhesive above its lower critical solution temperature (LCST), around 32 ° C. In this study, the molar mass and the grafting density of PNIPAM are the two main parameters studied for the surface modifications. Finally, the surface properties of the grafted matrices were characterised. In vitro, the materials showed thermosensitive bioadhesive properties, with a cellular bioadhesion mainly observed above the LCST. However, ex vivo tests exhibited higher bioadhesion on porcine organs at lower temperatures. This study led to the development of absorbent biomaterials with thermoregulated surface properties. Further understanding of the relationship between surface properties and in vivo bioadhesion would allow the optimisation of the thermoregulated surface properties
Caritey, Jean-Philippe. „Relation entre la modification chimique de précurseurs hydrophiles d'origine naturelle et leurs propriétés en solution diluée et semi-diluée“. Rouen, 1994. http://www.theses.fr/1994ROUES013.
Der volle Inhalt der QuelleRocca, Smith Jeancarlo Renzo. „A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK004/document.
Der volle Inhalt der QuellePoly(lactic acid) (PLA) is a biodegradable and renewable polyester, which is considered as the most promising eco-friendly substitute of conventional plastics. It is mainly used for food packaging applications, but some drawbacks still reduce its applications. On the one hand, its low barrier performance to gases (e.g. O2 and CO2) limits its use for applications requiring low gas transfer, such as modified atmosphere packaging (MAP) or for carbonate beverage packaging. On the other hand, its natural water sensitivity, which contributes to its biodegradation, limits its use for high moisture foods with long shelf life.Other biopolymers such as wheat gluten (WG) can be considered as interesting materials able to increase the PLA performances. WG is much more water sensitive, but it displays better gas barrier properties in dry surroundings. This complementarity in barrier performances drove us to study the development of multilayer complexes PLA-WG-PLA and to open unexplored application scenarios for these biopolymers.This project was thus intended to better understand how food components and use conditions could affect the performances of PLA films, and how these performances could be optimized by additional processing such as surface modifications (e.g. corona treatment and coatings).To that aim, three objectives were targeted:- To study the stability of industrially scale produced PLA films in contact with different molecules (CO2 and water) and in contact with vapour or liquid phases, with different pH, in order to mimic a wide range of food packaging applications.- To better understand the impact of some industrial processes such as corona or hot press treatments on PLA.- To combine PLA with WG layer to produce high barrier and biodegradable complexes.Different approaches coming from food engineering and material engineering were adopted. PLA films were produced at industrial scale by Taghleef Industries with specific surface treatments like corona. Wheat gluten films, coatings and layers were developed and optimized at lab scale as well as the 3-layers PLA-WG-PLA complexes. Different technologies able to mimic industrial processes were considered such as hot press, high pressure homogenization, ultrasounds, wet casting and spin coating. The physical and chemical properties of PLA films were then studied at the bulk and surface levels, from macroscopic to nanometer scale. The functional properties like permeability to gases (e.g. O2 and CO2) and water, gas and vapour sorption, mechanical and surface properties were also investigated.Exposed to CO2, PLA films exhibited a linear sorption behaviour with pressure, but the physical modifications induced by high pressure did not affect its use for food packaging. However, when exposed to moisture in both liquid and vapour state (i.e. environments from 50 to 100 % relative humidity (RH)), PLA was significantly degraded after two months at 50 °C (accelerated test) due to hydrolysis. This chemical deterioration was evidenced by a significant decrease of the molecular weight, which consequently induced a loss of transparency and an increase of the crystallinity. The hydrolysis was accelerated when the chemical potential of water was increased, and it was surprisingly higher for vapour compared to liquid state. In addition, pH did not affect the rate of hydrolysis.Knowing much better the limitation of PLA films, the challenge was to improve its functional properties by combining them with WG, as a high gas barrier bio-sourced and biodegradable polymer. The use of high pressure homogenization produced homogeneous WG coatings, with improved performances. This process was thus selected for making 3 layer complexes by assembly of a wheat gluten layer between two layers of PLA, together with corona treatment and hot press technologies.Corona treatment applied to PLA physically and chemically modified its surface at the nanometer scale (...)
I materiali plastici convenzionali trovano impiego in tutti campi della nostra vita, specialmente nel settore del packaging alimentare, ed in seguito all’utilizzo contaminano e danneggiano il nostro ecosistema. Materiali plastici derivanti da risorse naturali e biodegradabili, come acido polilattico (PLA), sono attualmente disponibili sul mercato anche se caratterizzati da performances inferiori.Questo progetto di dottorato è mirato 1) allo studio della stabilità di film di PLA a varie condizioni di stoccaggio come temperatura, umidità relativa, pH, o esposizione a vapori o gas; 2) a comprendere meglio le influenze di alcuni processi industriali come trattamento corona e hot press nelle proprietà dei film di PLA; 3) a sviluppare complessi multistrato tra film di PLA e di glutine che abbiano proprietà barriera più elevate rispetto ai singoli film.Gli imballaggi a base di PLA sono stati prodotti da Taghleef Industries, produttore leader nel settore e dotato di infrastrutture atte ai trattamenti di modificazione di superfice come il trattamento corona. I film a base di glutine e i coatings sono stati sviluppati e ottimizzati su scala di laboratorio, così come i complessi trilaminari PLA-glutine-PLA.Le proprietà fisiche e chimiche dei film di PLA sono state investigate a livello di superficie, così come a livello di bulk. Diverse tecniche analitiche, provenienti dal campo delle scienze dei materiali e delle scienze degli alimenti, sono state adottate in questo progetto di dottorato come calorimetria differenziale a scansione (DSC), termogravimetria (TGA), cromatografia di esclusione molecolare (SEC), microscopia a forza atomica (AFM), microscopia elettronica a scansione (SEM), spettrofotometria infrarossa a trasformata di Fourier in riflettanza totale attenuata (ATR-FTIR) e spettroscopia fotoelettronica a raggi X (XPS).Le proprietà funzionali come le permeabilità al vapore acqueo (H2O), all’ossigeno (O2), al diossido di carbonio (CO2) o all’elio (He) sono state investigate, cosi come l’assorbimento di gas e/o vapori, le proprietà meccaniche e le proprietà di superfice.Nonostante i film di PLA assorbano linearmente CO2 a pressioni crescenti, l’assorbimento di tale gas è ridotto a basse pressioni in modo da non modificare le sue proprietà fisiche – come contrariamente osservato quando il PLA è esposto a CO2 ad alte pressioni – e da non influenzare negativamente il suo utilizzo come imballaggio alimentare. Ad ogni modo, quando i film di PLA sono esposti ad ambienti umidi, o quando sono immersi in acqua liquida, sono significativamente degradati per idrolisi dopo due mesi di stoccaggio a 50 °C (test accelerato). Questo deterioramento chimico è stato evidenziato da una significativa riduzione del peso molecolare del PLA che, conseguentemente, induce una sua perdita di trasparenza e ne incrementa la sua cristallinità. Inoltre, è stato evidenziato che il pH non influenza la velocità di idrolisi. Quest’informazione ha importanza pratica per possibili utilizzi di PLA come imballaggio di alimenti ad alta umidità.Il glutine è stato scelto per le sue alte proprietà barriera, quando è protetto da ambienti ad alta umidità. Si è visto che l’incorporazione di lipidi non porta con sé grandi miglioramenti nelle performances dei film a base di glutine. Invece, l’utilizzo della tecnologia di omogeneizzazione ad alte pressioni permette una migliore dispersione del glutine, ottenendo film più omogenei e con migliori proprietà funzionali. Questa tecnologia è stata quindi scelta per produrre i complessi multistrato, intercalando i film di glutine tra due film di PLA, usando il trattamento hot press (10 MPa, 130 °C, 10 min). Si è osservato che il trattamento hot press modifica le proprietà dei film di PLA, di glutine e dei film multistrato Hot press induce cristallizzazione in PLA, e conseguentemente aumenta le sue proprietà barriera complessive, approssimativamente al 40 % all’acqua e al 60 % all’ossigeno (...)
Los materiales plásticos tradicionales son utilizados en todos los campos de nuestra vida y en particular modo como embajales de productos alimenticios; los cuales después de ser utilizados contaminan y dañan nuesto medio ambiente. Materiales plásticos derivados de recursos naturales y biodegradables, como el ácido poliláctico (PLA) se encuentran actualmente disponibles en el mercado a pesar de sus menores performances. Este proyecto de doctorado está orientado 1) al estudio de la estabilidad de películas de PLA bajo diferentes condiciones como temperatura, humedad relativa, pH o exposición a vapores o gases, 2) comprender los efectos en las propiedades de las películas de PLA de algunos procesos industriales como el tratamiento corona y hot press, 3) desarrollar complejos multicapas de PLA y gluten que tengan propiedades barrera mejores que las de las películas individuales.Los embalajes a base de PLA han sido producidos por Taghleef Industries, productor líder en el sector y dotado de las infraestructuras industriales adaptadas a los tratamientos superficiales como el tratamiento corona. Las películas de gluten y los coatings han sido desarrollados a escala de laboratorio, así como los complejos tricapa PLA-gluten-PLA.Las propiedades físicas y químicas de las películas de PLA han sido investigadas a nivel de superficie así como a nivel de bulk. Diferentes técnicas de análisis, frecuentemente utilizadas en los campos de las ciencias de los materiales y de las ciencias de los alimentos, han sido empleadas en este proyecto como calorimetría diferencial de barrido (DSC), análisis termogravimétrico (TGA), cromotagrafía de exclusión por tamaño (SEC), microscopía de fuerza atómica (AFM), microscopía electrónica de barrido (SEM), espectroscopía de infrarrojos por transformada de Fourier con reflectancia total atenuada (ATR-FTIR) y espectroscopía fotoelectrónica de rayos X (XPS).Las propiedades funcionales de los embalajes como las permeabilidades al vapor de agua, al oxígeno (O2), al dióxido de carbono (CO2) o al helio (He) han sido investigadas, asi como la absorción de gases/vapores, las propiedades mecánicas y las propiedades superficiales. A pesar de que las películas de PLA absorven linealmente CO2 a presiones mayores, la absorción del gas es reducida a bajas presiones y no modifica las propiedades físicas del PLA, como contrariamente sucede cuando el PLA es expuesto a altas presiones de CO2. Por lo tanto, su influencia en las propiedades funcionales del PLA es mínima en las normales aplicaciones alimentarias. De todos modos cuando los embalajes de PLA son expuestos a ambientes húmedos o cuando son sumergidos en agua, procesos de hidrólisis los degradan significativamente después de dos meses de conservación a 50 °C (test acelerado). Este deterioramiento químico ha sido evidenciado por una significativa reducción del peso molecular del PLA, que en consecuencia induce una pérdida de transparencia y un aumento de su cristalinidad. Además, se ha observado que el pH no influye en la velocidad de hidrólisis. Esta información tiene una importancia práctica para posibles usos del PLA como embalajes de alimentos a alta humedad. El gluten ha sido elegido por sus altas propiedades barrera cuando es protegido de ambientes a alta humedad. La incorporación de lípidos en las películas de gluten no han mejorado sus performances. Pero la tecnología de la homogenización a altas presiones ha permitido mejorar la dispersión del gluten, obteniendo películas más homogéneas y con mejores propiedades funcionales. Esta tecnología ha sido, por lo tanto, elegida para producir los complejos multicapa, intercalando las películas de gluten entre dos de PLA, utilizando el tratamiendo hot press (10 MPa, 130 °C, 10 min) (...)
Dinis, Tony Mickael. „Prothèse nerveuse artificielle à partir de fibroïne de soie pour la réparation et la régénération de nerfs périphériques“. Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2152/document.
Der volle Inhalt der QuellePeripheral nerve injury causes sensory and/or motor functions deficits. Despite technological advances over the past 25 years, a complete recovery from these injuries remains unsatisfactory today. The autograft still considered the "gold standard" in clinical practice. This is the only technique able to offer complete functional recovery. However, the occurrence of postoperative complications in autologous nerve and the limited amount of available nerves lead to develop alternatives strategy.In this context, development of nerve graft substitutes becomes by far a clinical necessity. Despite research efforts, these artificial prostheses design based on biomaterial doesn’t allow nerve regeneration as found in autograft nerve procedures. The biomaterial used must have the physical and chemical properties similar to that of the native nerve. Silk, well known for its unique mechanical properties, proposes a good alternative to develop these prostheses. Indeed, the silk protein is commonly used in the biomedical field and regenerative medicine. This protein biocompatibility may be improved through chemical modifications to promote adhesion and cell growth by the incorporation of growth factors or other molecules of interest. Therefore, this thesis proposes to develop a new type of functionalized silk biomaterial based on two growth factors : Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF). Given the complex architecture that consists of nerve structure, a matrix which is able to support and manage the outgrowth of tissue becomes essential. We demonstrate the power of these aligned nanofibers (produced by electrospinning) to guide and manage tissue regeneration from different organ explants culture. Aligned silk nanofibers, were biocompatible and bio-activated by adding NGF involved for nerve regeneration. This matrix has been created with a concentration gradient of NGF to guide neuritis outgrowth in only one direction. The presence of this gradient demonstrated a better axonal growth in one direction versus the uniform concentration conditions. Nerve cells consist essentially of two cell populations which are neurons and Schwann cells. To optimize the culture and growth of these two populations, in addition to NGF, we incorporated CNTF to produce bifunctionalized nanofibers. These biofunctionalised nanofibers led to a length 3 times larger on contact with neurites. The glial cells growth, alignment and migration were stimulated by CNTF. Thus, we produced bi-functionalized nerve guidance conduits for rat implantation. The physico-chemical analyzes demonstrate the biomimetic of our guide tubes. Early studies of locomotion and observing histological sections of rat sciatic nerve, following the implementation of our conduits gave very promising results.These studies demonstrate the relevance of our nervous guides’ silk-based developed as an effective alternative to nerve autograft performed in the clinic