Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Biophysical dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Biophysical dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Biophysical dynamics"
Berendsen, H. J. C. „Biophysical applications of molecular dynamics“. Computer Physics Communications 44, Nr. 3 (Juni 1987): 233–42. http://dx.doi.org/10.1016/0010-4655(87)90078-6.
Der volle Inhalt der QuelleNelson, David R. „Biophysical Dynamics in Disorderly Environments“. Annual Review of Biophysics 41, Nr. 1 (09.06.2012): 371–402. http://dx.doi.org/10.1146/annurev-biophys-042910-155236.
Der volle Inhalt der QuelleAbarbanel, Henry D. I., Leif Gibb, R. Huerta und M. I. Rabinovich. „Biophysical model of synaptic plasticity dynamics“. Biological Cybernetics 89, Nr. 3 (01.09.2003): 214–26. http://dx.doi.org/10.1007/s00422-003-0422-x.
Der volle Inhalt der QuelleSataric, M. V., und J. A. Tuszynski. „Nonlinear Dynamics of Microtubules: Biophysical Implications“. Journal of Biological Physics 31, Nr. 3-4 (Dezember 2005): 487–500. http://dx.doi.org/10.1007/s10867-005-7288-1.
Der volle Inhalt der QuelleSu, Qian Peter, und Lining Arnold Ju. „Biophysical nanotools for single-molecule dynamics“. Biophysical Reviews 10, Nr. 5 (18.08.2018): 1349–57. http://dx.doi.org/10.1007/s12551-018-0447-y.
Der volle Inhalt der QuelleFernandez, Fernando R., Jordan D. T. Engbers und Ray W. Turner. „Firing Dynamics of Cerebellar Purkinje Cells“. Journal of Neurophysiology 98, Nr. 1 (Juli 2007): 278–94. http://dx.doi.org/10.1152/jn.00306.2007.
Der volle Inhalt der QuelleFlomenbom, Ophir. „Single File Dynamics Advances with a Focus on Biophysical Relevance“. Biophysical Reviews and Letters 09, Nr. 04 (Dezember 2014): 307–31. http://dx.doi.org/10.1142/s1793048014400013.
Der volle Inhalt der QuelleSikosek, Tobias, und Hue Sun Chan. „Biophysics of protein evolution and evolutionary protein biophysics“. Journal of The Royal Society Interface 11, Nr. 100 (06.11.2014): 20140419. http://dx.doi.org/10.1098/rsif.2014.0419.
Der volle Inhalt der QuelleTortora, Maxime MC, Hossein Salari und Daniel Jost. „Chromosome dynamics during interphase: a biophysical perspective“. Current Opinion in Genetics & Development 61 (April 2020): 37–43. http://dx.doi.org/10.1016/j.gde.2020.03.001.
Der volle Inhalt der QuelleChiu, Wah, und Keith Moffat. „Biophysical methods: structure, dynamics and gorgeous images“. Current Opinion in Structural Biology 17, Nr. 5 (Oktober 2007): 546–48. http://dx.doi.org/10.1016/j.sbi.2007.09.008.
Der volle Inhalt der QuelleDissertationen zum Thema "Biophysical dynamics"
Brandt, Erik G. „Interactions and dynamics in biophysical model systems /“. Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10300.
Der volle Inhalt der QuelleElmlund, Hans. „Protein structure dynamics and interplay : by single-particle electron microscopy“. Doctoral thesis, Stockholm : Teknik och hälsa, Technology and Health, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4669.
Der volle Inhalt der QuelleDale, Michael Anthony Joseph. „Global Energy Modelling : A Biophysical Approach (GEMBA)“. Thesis, University of Canterbury. Mechanical Engineering, 2010. http://hdl.handle.net/10092/5156.
Der volle Inhalt der QuellePearson, Joshua Thomas. „A biophysical study of protein dynamics and protein-ligand interactions /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8173.
Der volle Inhalt der QuelleStollar, Elliott Jonathan. „Biophysical and crystallographic investigation of homeodomain stability, dynamics, and recognition“. Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615778.
Der volle Inhalt der QuelleZerlaut, Yann. „Biophysical and circuit properties underlying population dynamics in neocortical networks“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066095/document.
Der volle Inhalt der QuelleThe neocortex of awake animals displays an activated state in whichcortical activity manifests highly complex, seemingly noisybehavior. At the level of single neurons the activity is characterizedby strong subthreshold fluctuations and irregular firing at lowrate. At the network level, the activity is weakly synchronized andexhibits a chaotic dynamics. Yet, it is within this regime thatinformation is processed reliably through neural networks. This regimeis thus crucial to neural computation. In this thesis, we contributeto its understanding by investigating how the biophysical propertiesat the cellular level combined with the properties of the networkarchitecture shapes this asynchronous dynamics.This thesis builds up on the so-called mean-field models of networkdynamics, a theoretical formalism that describes population dynamicsvia a self-consistency approach. At the core of this formalism lie theneuronal transfer function: the input-output description of individualneurons. The first part of this thesis focuses on derivingbiologically-realistic neuronal transfer functions. We firstformulate a two step procedure to incorporate biological details (suchas an extended dendritic structure and the effect of various ionicchannels) into this transfer function based on experimentalcharacterizations.First, we investigated in vitro how layer V pyramidal neocorticalneurons respond to membrane potential fluctuations on a cell-by-cellbasis. We found that, not only individual neurons strongly differ interms of their excitability, but also, and unexpectedly, in theirsensitivities to fluctuations. In addition, using theoreticalmodeling, we attempted to reproduce these results. The model predictsthat heterogeneous levels of biophysical properties such as sodiuminactivation, sharpness of sodium activation and spike frequencyadaptation account for the observed diversity of firing rateresponses.Then, we studied theoretically how dendritic integration in branchedstructures shape the membrane potential fluctuations at the soma. Wefound that, depending on the type of presynaptic activity, variouscomodulations of the membrane potential fluctuations could beachieved. We showed that, when combining this observation with theheterogeneous firing responses found experimentally, individual neuronsdifferentially responded to the different types of presynapticactivities. We thus propose that, because this mechanism offers a wayto produce specific activation as a function of the input properties,biophysical heterogeneity might contribute to the encoding of the stimulusproperties during sensory processing in neural networks.The second part of this thesis investigates how circuit properties,such as recurrent connectivity and lateral connectivity, combine withbiophysical properties to impact sensory responses through effectsmediated by population dynamics.We first investigated what was the effect of a high level of ongoingdynamics (the Up-state compared to the Down-state) on the scaling ofpost-synaptic responses. We found that the competition between therecruitment within the active recurrent network (in favor of highresponses in the Up-state) and the increased conductance level due tobackground activity (in favor of reduced responses in the Up-state)predicted a non trivial stimulus-response relationship as a functionof the intensity of the stimulation. This prediction was shown toaccurately capture measurements of post-synaptic membrane potentialresponses in response to cortical, thalamic or auditory stimulation inrat auditory cortex in vivo.Finally, by taking advantage of the mean-field approach, weconstructed a tractable large-scale model of the layer II-III networkincluding the horizontal fiber network. We investigate thespatio-temporal properties of this large-scale model and we compareits predictions with voltage sensitive dye imaging in awake fixatingmonkey
Doerdelmann, Thomas. „Structural and Biophysical Studies of the Pitx2 Homeodomain“. University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307443112.
Der volle Inhalt der QuellePathmasiri, Wimal. „Structural and Biophysical Studies of Nucleic Acids“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8245.
Der volle Inhalt der QuelleReyns, Nathalie Brigitte. „Biophysical dispersal dynamics of the blue crab in Pamlico Sound, North Carolina“. NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-10312004-143755/.
Der volle Inhalt der QuelleChimatiro, Sloans Kalumba. „The biophysical dynamics of the Lower Shire River Floodplain fisheries in Malawi /“. Connect to this title online, 2004. http://eprints.ru.ac.za/177/.
Der volle Inhalt der QuelleBücher zum Thema "Biophysical dynamics"
Trends in biophysics: From cell dynamics toward multicellular growth phenomena. Toronto: Apple Academic Press, 2013.
Den vollen Inhalt der Quelle findenKostyukov, Viktor. Molecular mechanics of biopolymers. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1010677.
Der volle Inhalt der QuelleComputational hydrodynamics of capsules and biological cells. Boca Raton: Chapman & Hall/CRC, 2010.
Den vollen Inhalt der Quelle findenBrooks, Charles L. Proteins: A theoretical perspective of dynamics, structure, and thermodynamics. New York: J. Wiley, 1988.
Den vollen Inhalt der Quelle findenMolecules, dynamics, and life: An introduction to self-organization of matter. New York: Wiley, 1986.
Den vollen Inhalt der Quelle findenGlass, Leon. Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York, NY: Springer New York, 1991.
Den vollen Inhalt der Quelle findenNicolis, J. Chaotic dynamics applied to biological information processing. Berlin: Akademie-Verlag, 1987.
Den vollen Inhalt der Quelle findenSansom, M. S. P., und Philip Charles Biggin. Molecular simulations and biomembranes: From biophysics to function. Cambridge: Royal Society of Chemistry, 2010.
Den vollen Inhalt der Quelle findenInoué, Shinya. Collected works of Shinya Inoué: Microscopes, living cells, and dynamic molecules. Hackensack, NJ: World Scientific, 2008.
Den vollen Inhalt der Quelle findenJ, Eyles Stephen, Hrsg. Mass spectrometry in structural biology and biophysics: Architecture, dynamics, and interaction of biomolecules. 2. Aufl. Hoboken, N.J: Wiley, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Biophysical dynamics"
Kammerdiner, Alla, Nikita Boyko, Nong Ye, Jiping He und Panos Pardalos. „Integration of Signals in Complex Biophysical Systems“. In Dynamics of Information Systems, 197–211. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5689-7_10.
Der volle Inhalt der QuelleKosztin, Ioan, und Klaus Schulten. „Molecular Dynamics Methods for Bioelectronic Systems in Photosynthesis“. In Biophysical Techniques in Photosynthesis, 445–64. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_22.
Der volle Inhalt der QuelleTimofeeva, Yulia. „Intracellular Calcium Dynamics: Biophysical and Simplified Models“. In Springer Series in Computational Neuroscience, 69–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00817-8_3.
Der volle Inhalt der QuelleBuda, Francesco. „Density Functional Theory and Car-Parrinello Molecular Dynamics Methods“. In Biophysical Techniques in Photosynthesis, 487–99. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_24.
Der volle Inhalt der QuelleGallego, Alejandro. „Biophysical Models: An Evolving Tool in Marine Ecological Research“. In Modelling Complex Ecological Dynamics, 279–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-05029-9_20.
Der volle Inhalt der QuellePlaxco, Kevin W., und Christopher M. Dobson. „Monitoring Protein Folding Using Time-Resolved Biophysical Techniques“. In Protein Dynamics, Function, and Design, 163–72. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4895-9_11.
Der volle Inhalt der QuelleLeigh, Brian S., Diana E. Schlamadinger und Judy E. Kim. „Structures and Dynamics of Proteins Probed by UV Resonance Raman Spectroscopy“. In Biophysical Methods for Biotherapeutics, 243–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118354698.ch9.
Der volle Inhalt der QuelleCardullo, Richard A., Robert M. Mungovan und David E. Wolf. „Imaging Membrane Organization and Dynamics“. In Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, 231–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9513-4_8.
Der volle Inhalt der QuelleGierasch, Lila M. „Signal Sequences: Roles and Interactions by Biophysical Methods“. In Biological Membranes: Structure, Biogenesis and Dynamics, 191–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78846-8_18.
Der volle Inhalt der QuelleKonermann, Lars, Johannes Messinger und Warwick Hillier. „Mass Spectrometry-Based Methods for Studying Kinetics and Dynamics in Biological Systems“. In Biophysical Techniques in Photosynthesis, 167–90. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Biophysical dynamics"
Feng, Jianfeng. „A comparison between abstract and biophysical neuron models“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302375.
Der volle Inhalt der QuelleDu, Y., und A. M. Al-Jumaily. „Modified Fading Memory Model to Describe ASM Dynamics“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41179.
Der volle Inhalt der QuelleMajumdar, Anindya, und Sean J. Kirkpatrick. „Optical vortices as potential indicators of biophysical dynamics“. In SPIE BiOS, herausgegeben von Valery V. Tuchin, Kirill V. Larin, Martin J. Leahy und Ruikang K. Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2251026.
Der volle Inhalt der QuelleYu, Theodore, Terrence J. Sejnowski und Gert Cauwenberghs. „Biophysical neural spiking and bursting dynamics in reconfigurable analog VLSI“. In 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2010. http://dx.doi.org/10.1109/biocas.2010.5709602.
Der volle Inhalt der QuelleAl-Jumaily, A. M., und Y. Du. „Simplified Model for ASM Dynamics“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53133.
Der volle Inhalt der QuelleSpiliotis, Konstantinos G., Hari Radhakrishnan und George C. Georgiou. „Randomness switches the dynamics in a biophysical model for Parkinson Disease“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756429.
Der volle Inhalt der QuelleYu, T., und G. Cauwenberghs. „Biophysical synaptic dynamics in an analog VLSI network of hodgkin-huxley neurons“. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333272.
Der volle Inhalt der QuelleShcheglova, S. N., und B. O. Shcheglov. „Development of a mathematical model for assessing the biophysical effect of radiation on human health in the North“. In XXV REGIONAL SCIENTIFIC CONFERENCE STUDENTS, APPLICANTS AND YOUNG RESEARCHERS. Знание-М, 2020. http://dx.doi.org/10.38006/907345-63-8.2020.155.162.
Der volle Inhalt der QuelleDimitrov, Petar. „Investigation of dynamics of some biophysical parameters of Norway spruce stands by MODIS data“. In 2009 4th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2009. http://dx.doi.org/10.1109/rast.2009.5158232.
Der volle Inhalt der QuelleDeb, Saswati, und Arun Chakraborty. „Simulation of plankton dynamics in the Hooghly Estuary using a high resolution biophysical model“. In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6350952.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Biophysical dynamics"
Koch, Christof. Dynamic Biophysical Theory for the Role of Hippocampal Neural Networks in the Declarative Memory System. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada279961.
Der volle Inhalt der QuelleVerburg, Peter H., Žiga Malek, Sean P. Goodwin und Cecilia Zagaria. The Integrated Economic-Environmental Modeling (IEEM) Platform: IEEM Platform Technical Guides: User Guide for the IEEM-enhanced Land Use Land Cover Change Model Dyna-CLUE. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003625.
Der volle Inhalt der Quelle