Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Biomoleculaire.

Zeitschriftenartikel zum Thema „Biomoleculaire“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Biomoleculaire" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tongzhou Wang, Tongzhou Wang, Liping Xie Liping Xie, Haley Huang Haley Huang, Xin Li Xin Li, Ruliang Wang Ruliang Wang, Guang Yang Guang Yang, Yanan Du Yanan Du und Guoliang Huang Guoliang Huang. „Label-free biomolecular imaging using scanning spectral interferometry“. Chinese Optics Letters 11, Nr. 11 (2013): 111102–5. http://dx.doi.org/10.3788/col201311.111102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sainz de Murieta, Inaki, Jesus M. Miro-Bueno und Alfonso Rodriguez-Paton. „Biomolecular Computers“. Current Bioinformatics 6, Nr. 2 (01.06.2011): 173–84. http://dx.doi.org/10.2174/1574893611106020173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

OZAWA, Takeaki. „Biomolecular Science“. TRENDS IN THE SCIENCES 16, Nr. 5 (2011): 53–57. http://dx.doi.org/10.5363/tits.16.5_53.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

DOI, Junta. „Biomolecular Visualization“. Journal of the Visualization Society of Japan 10, Nr. 39 (1990): 222–27. http://dx.doi.org/10.3154/jvs.10.222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hulme, John P., Jihye Gwak und Yuji Miyahara. „Biomolecular Embossing“. Journal of the American Chemical Society 128, Nr. 2 (Januar 2006): 390–91. http://dx.doi.org/10.1021/ja055805r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brown, Keri A., und Terence A. Brown. „Biomolecular Archaeology“. Annual Review of Anthropology 42, Nr. 1 (21.10.2013): 159–74. http://dx.doi.org/10.1146/annurev-anthro-092412-155455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

HILGARTNER, STEPHEN. „Biomolecular Databases“. Science Communication 17, Nr. 2 (Dezember 1995): 240–63. http://dx.doi.org/10.1177/1075547095017002009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hemaspaandra, Lane A. „Biomolecular computing“. ACM SIGACT News 30, Nr. 2 (Juni 1999): 22–30. http://dx.doi.org/10.1145/568547.568557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hess, Henry, und George D. Bachand. „Biomolecular motors“. Materials Today 8, Nr. 12 (Dezember 2005): 22–29. http://dx.doi.org/10.1016/s1369-7021(05)71286-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Koehler, M., und S. Diekmann. „Biomolecular nanotechnology“. Reviews in Molecular Biotechnology 82, Nr. 1 (November 2001): 1–2. http://dx.doi.org/10.1016/s1389-0352(01)00031-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

TIRRELL, JANE G., MAURILLE J. FOURNIER, THOMAS L. MASON und DAVID A. TIRREL. „Biomolecular Materials“. Chemical & Engineering News 72, Nr. 51 (19.12.1994): 40–51. http://dx.doi.org/10.1021/cen-v072n051.p040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yamamura, Masayuki, Tom Head und Masami Hagiya. „Biomolecular computing“. New Generation Computing 20, Nr. 3 (September 2002): 215–16. http://dx.doi.org/10.1007/bf03037356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mantsch, H. „Biomolecular spectroscopy“. TrAC Trends in Analytical Chemistry 13, Nr. 8 (September 1994): 338–39. http://dx.doi.org/10.1016/0165-9936(94)87007-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mantsch, H. H. „Biomolecular spectroscopy“. TrAC Trends in Analytical Chemistry 13, Nr. 6 (Juni 1994): xi—xii. http://dx.doi.org/10.1016/0165-9936(94)87053-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mason, Stephen. „Biomolecular homochirality“. Chemical Society Reviews 17 (1988): 347. http://dx.doi.org/10.1039/cs9881700347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mason, Stephen F. „Biomolecular handedness“. Biochemical Pharmacology 37, Nr. 1 (Januar 1988): 1–7. http://dx.doi.org/10.1016/0006-2952(88)90748-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Middelberg, Anton. „Biomolecular Engineering“. Chemical Engineering Science 61, Nr. 3 (Februar 2006): 875. http://dx.doi.org/10.1016/j.ces.2005.08.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hoff, A. J. „Biomolecular spectroscopy“. Spectrochimica Acta Part A: Molecular Spectroscopy 50, Nr. 2 (Februar 1994): 379–80. http://dx.doi.org/10.1016/0584-8539(94)80069-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Miró, Jesús M., und Alfonso Rodríguez-Patón. „Biomolecular Computing Devices in Synthetic Biology“. International Journal of Nanotechnology and Molecular Computation 2, Nr. 2 (April 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.

Der volle Inhalt der Quelle
Annotation:
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulation, the so-called competitive hybridization and the workings of certain biomolecules like restriction enzymes or regulatory proteins. Synthetic biology, biomolecular computation, systems biology and standard molecular biology concepts are also defined to give a better understanding of the chapter. The aim is to acquaint readers with these biomolecular devices born of the marriage between synthetic biology and biomolecular computation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Raković, D., M. Dugić, M. B. Plavšić, G. Keković, Irena Ćosić und David Davidović. „Quantum Decoherence and Quantum-Holographic Information Processes: From Biomolecules to Biosystems“. Materials Science Forum 518 (Juli 2006): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.518.485.

Der volle Inhalt der Quelle
Annotation:
Our recently proposed quantum approach to biomolecular recognition processes is hereby additionally supported by biomolecular Resonant Recognition Model and by quantum-chemical theory of biomolecular non-radiative resonant transitions. Previously developed general quantumdecoherence framework for biopolymer conformational changes in very selective ligandproteins/ target-receptors key/lock biomolecular recognition processes (with electron-conformational coupling, giving rise to dynamical modification of many-electron energy-state hypersurface of the cellular quantum-ensemble ligand-proteins/target-receptors biomolecular macroscopic quantum system, with revealed possibility to consider cellular biomolecular recognition as a Hopfield-like quantum-holographic associative neural network) is further extended from nonlocal macroscopicquantum level of biological cell to nonlocal macroscopic-quantum level of biological organism, based on long-range coherent microwave excitations (as supported by macroscopic quantum-like microwave resonance therapy of the acupuncture system) - which might be of fundamental importance in understanding of underlying macroscopic quantum (quantum-holographic Hopfieldlike) control mechanisms of embryogenesis/ontogenesis and morphogenesis, and their backward influence on the expression of genes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ishihama, Yasushi, und Tatsuya Higashi. „“Biomolecular Mass Spectrometry”“. Analytical Sciences 34, Nr. 9 (10.09.2018): 989. http://dx.doi.org/10.2116/analsci.ge1809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bollinger, Terry. „Biomolecular Quantum Computation“. Terry's Archive Online 2020, Nr. 10 (22.10.2020): 1007. http://dx.doi.org/10.48034/20201007.

Der volle Inhalt der Quelle
Annotation:
In terms of leveraging the total power of quantum computing, the prevalent current (2020) model of designing quantum computation devices to follow the von Neuman model of abstraction is highly unlikely to be making full use of the full range of computational assistance possible at the atomic and molecular level. This is particularly the case for molecular modeling, in using computational models that more directly leverage the quantum effects of one set of molecules to estimate the behavior of some other set of molecules would remove the bottleneck of insisting that modeling first be converted to the virtual binary or digital format of quantum von Neuman machines. It is argued that even though this possibility of “fighting molecular quantum dynamics with molecular quantum dynamics” was recognized by early quantum computing founders such as Yuri Manin and Richard Feynman, the idea was quickly overlooked in favor of the more computer-compatible model that later developed into qubits and qubit processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Mulholland, Adrian J. „Introduction. Biomolecular simulation“. Journal of The Royal Society Interface 5, suppl_3 (30.09.2008): 169–72. http://dx.doi.org/10.1098/rsif.2008.0385.focus.

Der volle Inhalt der Quelle
Annotation:
‘Everything that living things do can be understood in terms of the jigglings and wigglings of atoms’ as Richard Feynman provocatively stated nearly 50 years ago. But how can we ‘see’ this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Olson, Arthur J. „Visualizing Biomolecular Interactions“. Clinical Chemistry 37, Nr. 4 (01.04.1991): 607–8. http://dx.doi.org/10.1093/clinchem/37.4.607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Tang, Lei. „Artificial biomolecular condensates“. Nature Methods 16, Nr. 1 (20.12.2018): 23. http://dx.doi.org/10.1038/s41592-018-0288-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Dunn, F. „Biomolecular ultrasound absorption“. Journal of the Acoustical Society of America 81, S1 (Mai 1987): S70—S71. http://dx.doi.org/10.1121/1.2024373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Scolozzi, C. „PKD: Biomolecular Aspects“. Giornale di Tecniche Nefrologiche e Dialitiche 24, Nr. 4 (Oktober 2012): 92–94. http://dx.doi.org/10.1177/039493621202400402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bren, Kara L. „Engineered Biomolecular Catalysts“. Journal of the American Chemical Society 139, Nr. 41 (04.10.2017): 14331–34. http://dx.doi.org/10.1021/jacs.7b09896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Wolynes, P. G. „Computational biomolecular science“. Proceedings of the National Academy of Sciences 95, Nr. 11 (26.05.1998): 5848. http://dx.doi.org/10.1073/pnas.95.11.5848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Insana, Michael F., und Samuel A. Wickline. „Multimodality Biomolecular Imaging“. Proceedings of the IEEE 96, Nr. 3 (März 2008): 378–81. http://dx.doi.org/10.1109/jproc.2007.913497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Listinsky, Jay J. „Biomolecular NMR Spectroscopy“. Radiology 204, Nr. 1 (Juli 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Novotny, Milos V. „Capillary biomolecular separations“. Journal of Chromatography B: Biomedical Sciences and Applications 689, Nr. 1 (Februar 1997): 55–70. http://dx.doi.org/10.1016/s0378-4347(96)00398-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gabdoulline, Razif R., und Rebecca C. Wade. „Biomolecular diffusional association“. Current Opinion in Structural Biology 12, Nr. 2 (April 2002): 204–13. http://dx.doi.org/10.1016/s0959-440x(02)00311-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Knowles, Peter. „Biomolecular NMR spectroscopy“. Biochemical Education 24, Nr. 1 (Januar 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bencsáth, Márta, Aladár Blaskovits und János Borvendég. „Biomolecular cytokine therapy“. Pathology & Oncology Research 9, Nr. 1 (März 2003): 24–29. http://dx.doi.org/10.1007/bf03033710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Stockley, Peter G. „Biomolecular interaction analysis“. Trends in Biotechnology 14, Nr. 2 (Februar 1996): 39–41. http://dx.doi.org/10.1016/0167-7799(96)80916-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wilson, W. D. „Analyzing Biomolecular Interactions“. Science 295, Nr. 5562 (15.03.2002): 2103–5. http://dx.doi.org/10.1126/science.295.5562.2103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Plant, Anne L., Christopher S. Chen, Jay T. Groves und Atul N. Parikh. „The Biomolecular Interface“. Langmuir 19, Nr. 5 (März 2003): 1449–50. http://dx.doi.org/10.1021/la034035z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Urry, Dan W. „Elastic Biomolecular Machines“. Scientific American 272, Nr. 1 (Januar 1995): 64–69. http://dx.doi.org/10.1038/scientificamerican0195-64.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wemmer, David. „SnapShot: Biomolecular NMR“. Cell 166, Nr. 6 (September 2016): 1600. http://dx.doi.org/10.1016/j.cell.2016.08.061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Malmqvist, Magnus, und Russ Granzow. „Biomolecular Interaction Analysis“. Methods 6, Nr. 2 (Juni 1994): 95–98. http://dx.doi.org/10.1006/meth.1994.1012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cook, Julia L. „Internet Biomolecular Resources“. Analytical Biochemistry 268, Nr. 2 (März 1999): 165–72. http://dx.doi.org/10.1006/abio.1998.3088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Li, Xiaoran, Zhenni Chen, Haimin Zhang, Yan Zhuang, He Shen, Yanyan Chen, Yannan Zhao, Bing Chen, Zhifeng Xiao und Jianwu Dai. „Aligned Scaffolds with Biomolecular Gradients for Regenerative Medicine“. Polymers 11, Nr. 2 (15.02.2019): 341. http://dx.doi.org/10.3390/polym11020341.

Der volle Inhalt der Quelle
Annotation:
Aligned topography and biomolecular gradients exist in various native tissues and play pivotal roles in a set of biological processes. Scaffolds that recapitulate the complex structure and microenvironment show great potential in promoting tissue regeneration and repair. We begin with a discussion on the fabrication of aligned scaffolds, followed by how biomolecular gradients can be immobilized on aligned scaffolds. In particular, we emphasize how electrospinning, freeze drying, and 3D printing technology can accomplish aligned topography and biomolecular gradients flexibly and robustly. We then highlight several applications of aligned scaffolds and biomolecular gradients in regenerative medicine including nerve, tendon/ligament, and tendon/ligament-to-bone insertion regeneration. Finally, we finish with conclusions and future perspectives on the use of aligned scaffolds with biomolecular gradients in regenerative medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Dey, D., und T. Goswami. „Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication“. Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.

Der volle Inhalt der Quelle
Annotation:
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Winter, Roland. „Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation“. Annual Review of Biophysics 48, Nr. 1 (06.05.2019): 441–63. http://dx.doi.org/10.1146/annurev-biophys-052118-115601.

Der volle Inhalt der Quelle
Annotation:
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Montagner, Suelen, und Adilson Costa. „Bases biomoleculares do fotoenvelhecimento“. Anais Brasileiros de Dermatologia 84, Nr. 3 (Juli 2009): 263–69. http://dx.doi.org/10.1590/s0365-05962009000300008.

Der volle Inhalt der Quelle
Annotation:
Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Liang, Peigang, Jiaqi Zhang und Bo Wang. „Emerging Roles of Ubiquitination in Biomolecular Condensates“. Cells 12, Nr. 18 (21.09.2023): 2329. http://dx.doi.org/10.3390/cells12182329.

Der volle Inhalt der Quelle
Annotation:
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Mogaki, Rina, P. K. Hashim, Kou Okuro und Takuzo Aida. „Guanidinium-based “molecular glues” for modulation of biomolecular functions“. Chem. Soc. Rev. 46, Nr. 21 (2017): 6480–91. http://dx.doi.org/10.1039/c7cs00647k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Keković, G., D. Raković und David Davidović. „Relevance of Polaron/Soliton-Like Transport Mechanisms in Cascade Resonant Isomeric Transitions of Q1D-Molecular Chains“. Materials Science Forum 555 (September 2007): 119–24. http://dx.doi.org/10.4028/www.scientific.net/msf.555.119.

Der volle Inhalt der Quelle
Annotation:
Our recently proposed quantum approach to biomolecular isomeric-conformational changes and recognition processes, additionally supported by biomolecular resonant recognition model and by quantum-chemical theory of biomolecular non-radiative resonant transitions, is hereby extended to cascade resonant transitions via close intermediate participating isomeric states - which might be related to polaron/soliton-like energy and charge transport mechanisms in Q1Dmolecular chains, whose relevance is explored in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Gawthrop, Peter J., und Edmund J. Crampin. „Energy-based analysis of biomolecular pathways“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, Nr. 2202 (Juni 2017): 20160825. http://dx.doi.org/10.1098/rspa.2016.0825.

Der volle Inhalt der Quelle
Annotation:
Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass flows (reaction rates) through the network. In this work, we show how pathway analysis of biomolecular networks can be extended using an energy-based approach to provide information about energy flows through the network. This energy-based approach is developed using the engineering-inspired bond graph methodology to represent biomolecular reaction networks. The approach is introduced using glycolysis as an exemplar; and is then applied to analyse the efficiency of free energy transduction in a biomolecular cycle model of a transporter protein [sodium-glucose transport protein 1 (SGLT1)]. The overall aim of our work is to present a framework for modelling and analysis of biomolecular reactions and processes which considers energy flows and losses as well as mass transport.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie