Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Biomimetické peptidy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Biomimetické peptidy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Biomimetické peptidy"
Abbas, Manzar, Wojciech P. Lipiński, Jiahua Wang und Evan Spruijt. „Peptide-based coacervates as biomimetic protocells“. Chemical Society Reviews 50, Nr. 6 (2021): 3690–705. http://dx.doi.org/10.1039/d0cs00307g.
Der volle Inhalt der QuelleShy, Adrianna N., Huaimin Wang, Zhaoqianqi Feng und Bing Xu. „Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes“. Molecules 26, Nr. 1 (26.12.2020): 77. http://dx.doi.org/10.3390/molecules26010077.
Der volle Inhalt der QuelleBoix, Estefania, Valeria Puddu und Carole C. Perry. „Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras“. Dalton Trans. 43, Nr. 44 (2014): 16902–10. http://dx.doi.org/10.1039/c4dt01974a.
Der volle Inhalt der QuelleKlepel, Florian, und Bart Jan Ravoo. „A dynamic combinatorial library for biomimetic recognition of dipeptides in water“. Beilstein Journal of Organic Chemistry 16 (02.07.2020): 1588–95. http://dx.doi.org/10.3762/bjoc.16.131.
Der volle Inhalt der QuelleChantawannakul, Jarinyagon, Paninnuch Chatpattanasiri, Vichugorn Wattayagorn, Mesayamas Kongsema, Tipanart Noikaew und Pramote Chumnanpuen. „Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line“. Molecules 26, Nr. 19 (23.09.2021): 5767. http://dx.doi.org/10.3390/molecules26195767.
Der volle Inhalt der QuelleAgouram, Naima, El Mestafa El Hadrami und Abdeslem Bentama. „1,2,3-Triazoles as Biomimetics in Peptide Science“. Molecules 26, Nr. 10 (14.05.2021): 2937. http://dx.doi.org/10.3390/molecules26102937.
Der volle Inhalt der QuelleSivkova, Radoslava, Johanka Táborská, Alain Reparaz, Andres de los Santos Pereira, Ilya Kotelnikov, Vladimir Proks, Jan Kučka, Jan Svoboda, Tomáš Riedel und Ognen Pop-Georgievski. „Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications“. International Journal of Molecular Sciences 21, Nr. 18 (16.09.2020): 6800. http://dx.doi.org/10.3390/ijms21186800.
Der volle Inhalt der QuelleFoden, Callum S., Saidul Islam, Christian Fernández-García, Leonardo Maugeri, Tom D. Sheppard und Matthew W. Powner. „Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water“. Science 370, Nr. 6518 (12.11.2020): 865–69. http://dx.doi.org/10.1126/science.abd5680.
Der volle Inhalt der QuelleGovada, Lata, Emmanuel Saridakis, Sean C. Kassen, Ahmad Bin-Ramzi, Rhodri Marc Morgan, Benjamin Chain, John R. Helliwell und Naomi E. Chayen. „X-ray crystallographic studies of RoAb13 bound to PIYDIN, a part of the N-terminal domain of C-C chemokine receptor 5“. IUCrJ 8, Nr. 4 (01.07.2021): 678–83. http://dx.doi.org/10.1107/s2052252521005340.
Der volle Inhalt der QuelleKirkham, J., A. Firth, D. Vernals, N. Boden, C. Robinson, R. C. Shore, S. J. Brookes und A. Aggeli. „Self-assembling Peptide Scaffolds Promote Enamel Remineralization“. Journal of Dental Research 86, Nr. 5 (Mai 2007): 426–30. http://dx.doi.org/10.1177/154405910708600507.
Der volle Inhalt der QuelleDissertationen zum Thema "Biomimetické peptidy"
Mokrý, Michal. „In silico návrh a validace peptidových derivátů konotoxinu pro nanoterapii neuroblastomu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442491.
Der volle Inhalt der QuelleBrunn, Jonathan. „Investigation of Possible Novel Peptide Inhibitors to BAG-1 Based On Peptidyl-Biomimetics“. VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2942.
Der volle Inhalt der QuelleBurrage, Sarah Anne. „Biomimetic synthesis of subtilin“. Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264831.
Der volle Inhalt der QuelleDickson, James. „Cyclic amidines as peptide bond replacements“. Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266933.
Der volle Inhalt der QuelleRenkel, Jochen [Verfasser]. „Biomimetic Identification of Phase-Selective Peptide-Additives / Jochen Renkel“. Mainz : Universitätsbibliothek Mainz, 2020. http://d-nb.info/1203889208/34.
Der volle Inhalt der QuelleWu, Xiaoming. „Biomimetic approaches to functional optimization of macrocyclic decapeptide gramicidin S /“. View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202003%20WUX.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 103-107). Also available in electronic version. Access restricted to campus users.
Larsen, Coby Christian. „ENDOTHELIAL CELL GROWTH, SHEAR STABILITY, AND FUNCTION ON BIOMIMETIC PEPTIDE FLUOROSURFACTANT POLYMERS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1183690553.
Der volle Inhalt der QuelleVezenkov, Lubomir. „Synthesis, biological and structural analysis of organized biomimetic systems“. Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON13502/document.
Der volle Inhalt der QuelleAs a part of a program for foldamer design two ¦Â-turn mimetics (3S)-amino-5-(carboxylmethyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one or DBT and 2-aminomethyl-phenyl-acetic acid or AMPA were selected as frameworks from a molecular modeling study for their suitability to adopt helical structure. At first we developed a highly efficient scale up synthesis of the DBT moiety protected by 9-fluorenylmetoxycarbonyl (Fmoc) group. By standard solid phase peptide synthesis (SPPS) we synthesized DBT oligomers of different lenghts and modifications were introduced at their N-terminus. Our first task was to perform structural analysis of the oligomers by NMR and X-Ray. Numerous NOE interactions in the DBT pentamer and hexamer molecules were detected by NMR 2D NOESY experiments. These data strongly suggest the organization of these DBT oligomers. Small crystals were obtained from the same molecules in DMSO but at the time being their size is not importan t enough for X-Ray crystallography studies. In a parallel study we hypothesized that short oligomers constructed by DBT or AMPA frameworks could translocate the cellular membrane and could be used as new cell penetrating non-peptides - CPNP. Even though these compounds are not charged as most cell penetrating peptides (CPP)5 or CPNP, we considered that by virtue of their aromaticity, hydrophobicity and their well-organized structure they could have a non-specific interaction with the lipid bilayer and thus be internalized into the cell. Short oligomers were synthesized on Rink amide (RA) resin following SPPS methodology and labelled at their N-terminus with fluorescein isothiocyanate (FITC). At first the cellular uptake of the (DBT)2-4 oligomers in MDA-MB-231 breast cancer cells was analyzed by fluorescence emission measurement and compared to the potent and well-studied CPP octa-arginine (Arg)8 as a positive control and carboxyfluorescein as a negative control. The highest intracellular fluorescence intensity was found for (DBT)4 with a drastic decrease (>4-times) for (DBT)3 and (DBT)2 oligomers. Thus, the cellular uptake appeared length-dependent with an increase of the internalization with the oligomer size. Moreover, the amount of (DBT)4 that was internalized was more significant than that of (Arg)8 despite the fact that it is uncharged. By confocal microscopy we determined that (DBT)4 is mainly localized in the endosomes after 3 hours of incubation and in the lysosomes after 16 hours of incubation. Altogether, these data indicate the ability of these oligomers to target the endolysosomal pathway. Although most of the initial drug delivery studies aimed to avoid lysosomal addressing to prevent subsequent drug degradation, more recent studies demonstrated the relevant clinical utility to target this compartment for drug delivery in the treatment of lysosomal storage diseases, Alzheimer¡¯s disease, and cancer.While analyzing the internalization efficiency of our CPNP we decided to straightforward evaluate their concentration inside the cells. We studied our compounds internalization by total fluorescence emission measurement and by confocal microscopy but none of these techniques gave us the possibility to determine the exact amount of compound internalized per cell. A study reported by Burlina et al. brought a great improvement in proposing a highly reproducible quantification method based on MALDI-TOF MS to measure the concentration of the internalized peptides. However, after cell lysis, this method requires the capture of the biotin-labelled CPP by streptavidin coated magnetic beads. This step is particularly critical for the accuracy of the quantification. This is the reason why we decided to develop a new general methodology based on MALDI-TOF mass spectrometry (MS) which does not require any purification or separation steps. We studied the internalization of CPP/CPNP compou nds by using an UV light-absorbing tag alpha-cyano-4-hydroxycinnamic acid (HCCA) and preparing the samples in a neutral matrix such as alpha-cyano-4-hydroxycinnamic methyl ester (HCCE). This combination (HCCA tag and HCCE matrix) enabled us to discriminate MS signals induced by peptides of interest that were present in low concentration from those of unlabelled more abundant peptides. By addition of a precise amount of deuterated-HCCA-tagged CPP/CPNP prior the MALDI TOF MS experiment, the internalized CPP/CPNP could be quantified on the basis of the ratio between the [M+H]+ peaks of the deuterated and nondeuterated HCCA-tagged CPP.Another direction for research was to synthesize bioconjugates between our newly discovered CPNP and some biologically active compounds that are unable to cross the cell membrane. We selected pepstatine which is a powerful transition state inhibitor of the Cathepsin D (CD). Pepstatine while a very potent inhibitor of the CD is unable to cross the cellular membrane. Moreover pepstatine activity in vitro or in vivo is hampered by its poor solubility in water. CD is a soluble lysosomal aspartic endopeptidase synthesized in rough endoplasmic reticulum as preprocathepsin D (pCD).12 Upon entering the acidic endosomal and lysosomal compartments proteolytic cleavages of the pCD result in the formation of the active enzymatic form of CD. Under normal physiological conditions pCD is sorted to the lysosomes and found intracellularly but in some pathological and physiological conditions like cancer pCD/CD escape the normal targeting mechanism and is secreted from the cell. Once secreted to the outside, pCD can be endocytosed via M6PR or yet unknown receptor by both cancer cells and fibroblasts. The endocytosed pCD undergoes maturation into the enzymatically active CD. An enzymatic activity of CD outside of the cell or inside the endosomes could be responsible for the activation of several growth factors and growth factor receptors. Several groups have proven that the tumour growth is not inhibited by the powerful CD inhibitor pepstatine. These results exclude the importance of the CD enzymatic activity outside of the cell but as already mentioned pepstatine is unable to penetrate into the cell thus CD activation of growth factors inside the endosomes or the lysosomes is still a possibility. Different CPNP-Pepstatine conjugates were synthesized and tested in vitro for their ability to inhibit MDA-MB-231 breast cancer cells growth. Some of these conjugates showed high cytotoxicity, probably via a Cathepsin D inhibition in the endosomes or the lysosomes. One o f the most potent tested compounds was JMV4463. This compound was obtained by the conjugation of pepstatine with a CPNP as delivery system (AMPA4) and with solubilizing moiety composed of polyethylene glycol and D-Arginine residue. The good in vitro results obtained with the vectorized pepstatine encouraged us to perform in vivo tests. We performed scale up synthesis of JMV4463 in order to obtain enough product for anti-cancer activity on mice in the near future
Ling, Chen. „Structure-Activity Relationship of Hydroxyapatite-binding Peptides for Biomimetic Mineralization“. University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1461849773.
Der volle Inhalt der QuelleSibert, Robin S. „Redox active tyrosine residues in biomimetic beta hairpins“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29753.
Der volle Inhalt der QuelleCommittee Chair: Bridgette Barry; Committee Member: David Collard; Committee Member: Ingeborg Schmidt-Krey; Committee Member: Jake Soper; Committee Member: Mira Josowicz. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bücher zum Thema "Biomimetické peptidy"
Aleman, Carlos, Alberto Bianco und Mariano Venanzi. Peptide Materials: From Nanostuctures to Applications. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenAleman, Carlos, Alberto Bianco und Mariano Venanzi. Peptide Materials: From Nanostuctures to Applications. Wiley, 2013.
Den vollen Inhalt der Quelle findenAleman, Carlos, Alberto Bianco und Mariano Venanzi. Peptide Materials: From Nanostuctures to Applications. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Biomimetické peptidy"
Zou, Qianli, Kai Liu, Manzar Abbas und Xuehai Yan. „Peptide-Based Supramolecular Chemistry“. In Supramolecular Chemistry of Biomimetic Systems, 135–63. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6059-5_7.
Der volle Inhalt der QuelleArndt, Hans-Dieter, Roman Lichtenecker, Patrick Loos und Lech-Gustav Milroy. „Biomimetic Synthesis of Azole- and Aryl-Peptide Alkaloids“. In Biomimetic Organic Synthesis, 317–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634606.ch9.
Der volle Inhalt der QuelleArndt, Hans-Dieter, Lech-Gustav Milroy und Stefano Rizzo. „Biomimetic Synthesis of Indole-Oxidized and Complex Peptide Alkaloids“. In Biomimetic Organic Synthesis, 357–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634606.ch10.
Der volle Inhalt der QuelleGangloff, Niklas, und Robert Luxenhofer. „Peptoids for Biomimetic Hierarchical Structures“. In Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II, 389–413. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/12_2013_237.
Der volle Inhalt der QuelleGonzález-Pérez, Alfredo. „Proteins and Peptides in Biomimetic Polymeric Membranes“. In Proteins in Solution and at Interfaces, 283–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118523063.ch13.
Der volle Inhalt der QuelleLu, Jiaju, und Xiumei Wang. „Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications“. In Advances in Experimental Medicine and Biology, 297–312. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0445-3_18.
Der volle Inhalt der QuelleMukherjee, Kaushik, Qichao Ruan und Janet Moradian-Oldak. „Peptide-Mediated Biomimetic Regrowth of Human Enamel In Situ“. In Methods in Molecular Biology, 129–38. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9012-2_13.
Der volle Inhalt der QuelleKaur, Prerna, Hanying Bai und Hiroshi Matsui. „Genetically Modified Collagen-like Triple Helix Peptide as Biomimetic Template THIS CHAPTER HAS BEEN RETRACTED“. In Hybrid Nanomaterials, 251–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003497.ch9.
Der volle Inhalt der QuelleKaur Sidhu, Parveen, und Kiran Nehra. „Bacteriocins of Lactic Acid Bacteria as Potent Antimicrobial Peptides against Food Pathogens“. In Biomimetics. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95747.
Der volle Inhalt der Quelle„Peptide-Based Biomimetic Materials“. In Molecular Assembly of Biomimetic Systems, 129–81. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527634125.ch6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Biomimetické peptidy"
Nguyen, Mary-Anne, Graham Taylor und Stephen A. Sarles. „A Microfluidic Assembly and Simultaneous Interrogation of Networks of Asymmetric Biomimetic Membranes“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3878.
Der volle Inhalt der QuelleRosca, Elena V., Marie-France Penet, Jacob E. Koskimaki, Niranjan B. Pandey, Zaver M. Bhujwalla und Aleksander S. Popel. „Abstract 4267: Biomimetic anti-angiogenic peptide as therapeutic agent for breast cancer“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4267.
Der volle Inhalt der QuelleBarbhuiya, Mustafa A., Adam C. Mirando, Brian W. Simons, Ghali Lemtiri-Chlieh, Jordan J. Green, Aleksander S. Popel, Niranjan B. Pandey und Phuoc T. Tran. „Abstract 3201: Therapeutic potential of anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3201.
Der volle Inhalt der QuelleJabbari, Esmaiel, David N. Rocheleau, Weijie Xu und Xuezhong He. „Fabrication of Biomimetic Scaffolds With Well-Defined Pore Geometry by Fused Deposition Modeling“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31011.
Der volle Inhalt der QuelleDuval, D., C. Tarabout, N. Huby, F. Artzner, E. Gaviot, J. Zyss, A. Renault, E. Pouget und B. Bêche. „New practical approach of integrated photonic based on biomimetic peptidic/silica self-assembled nanotubes“. In SPIE OPTO: Integrated Optoelectronic Devices, herausgegeben von Jean-Emmanuel Broquin und Christoph M. Greiner. SPIE, 2009. http://dx.doi.org/10.1117/12.805500.
Der volle Inhalt der QuelleKishore, Vipuil, John E. Paderi, Anna Akkus, Alyssa Panitch und Ozan Akkus. „Incorporation of a Decorin Biomimetic Enhances the Mechanical Properties of Electrochemically Aligned Collagen Threads“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53310.
Der volle Inhalt der Quelle