Zeitschriftenartikel zum Thema „Biomedical materials“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Biomedical materials.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Biomedical materials" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Barenberg, S. A., und E. P. Mueller. „Biomedical Materials“. MRS Bulletin 16, Nr. 9 (September 1991): 22–25. http://dx.doi.org/10.1557/s0883769400056001.

Der volle Inhalt der Quelle
Annotation:
Biomedical materials is an embryonic interdisciplinary science whose practitioners are scientists, engineers, biochemists, and clinicians who use synthetic polymers, metals, ceramics, inorganic, and natural polymers to fabricate artificial organs, medical devices, drug delivery systems, prosthetics, and packaging systems.The intent of this special issue of the MRS Bulletin is to provide readers with insight into current biomaterials research and product development. This issue is not meant to be either conclusive or definitive, but rather a “sound bite” of the field.For further information, please feel free to contact either the individual authors or the editors of this issue.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mikos, Antonios G. „Multiphase biomedical materials“. Journal of Controlled Release 16, Nr. 3 (August 1991): 366–67. http://dx.doi.org/10.1016/0168-3659(91)90016-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mikos, Antonios G. „Multiphase biomedical materials“. Journal of Controlled Release 17, Nr. 2 (Oktober 1991): 207. http://dx.doi.org/10.1016/0168-3659(91)90060-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Helmus, Michael N. „Overview of Biomedical Materials“. MRS Bulletin 16, Nr. 9 (September 1991): 33–38. http://dx.doi.org/10.1557/s0883769400056025.

Der volle Inhalt der Quelle
Annotation:
Biomedical materials are synthetic polymers, metals, ceramics, inorganics, and natural macromolecules (biopolymers), that are manufactured or processed to be suitable for use in or as medical devices or prostheses. These materials typically come in contact with cells, proteins, tissues, organs, and organ systems. They can be implanted for long-term use, e.g., an arrtificial hip, or for temporary use, e.g., an intravenous catheter. Except in isolated cases when a material is used by itself, such as collagen injections for filling soft tissue defects, biomedical materials are used as a component in a medical device. The form of the material (perhaps a textile) how it interfaces (blood contacting, for instance), and its time of use will determine its required properties. A material's use needs to be viewed in the context of the total device and its interface with the body. One material property alone is unlikely to lead to a successful and durable device, but the failure to address a key property can lead to device failure. Until recently, medical-grade polymers, ceramics, inorganics, and metals were purified versions of commercial-grade materials. A variety of polymers, biopolymers, and inorganics is now being specifically developed for medical applications. Table I summarizes the types of biomedical materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mohammed, Mohsin T., Zahid A. Khan und Arshad N. Siddiquee. „Corrosion in Biomedical Grade Titanium Based Materials: A Review“. Indian Journal of Applied Research 3, Nr. 9 (01.10.2011): 206–10. http://dx.doi.org/10.15373/2249555x/sept2013/65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

TANAKA, Mototsugu. „Forefront in Biomedical Materials“. Journal of the Society of Materials Science, Japan 68, Nr. 8 (15.08.2019): 656–61. http://dx.doi.org/10.2472/jsms.68.656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

MIZUTANI, Masayoshi, Yuichi OTSUKA und Shoichi KIKUCHI. „Forefront in Biomedical Materials“. Journal of the Society of Materials Science, Japan 68, Nr. 9 (15.09.2019): 723–29. http://dx.doi.org/10.2472/jsms.68.723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

HISAMORI, Noriyuki, Takuya ISHIMOTO und Takayoshi NAKANO. „Forefront in Biomedical Materials“. Journal of the Society of Materials Science, Japan 68, Nr. 10 (15.10.2019): 798–803. http://dx.doi.org/10.2472/jsms.68.798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

OYA, Kei, Shogo MIYATA und Yusuke MORITA. „Forefront in Biomedical Materials“. Journal of the Society of Materials Science, Japan 68, Nr. 11 (15.11.2019): 865–70. http://dx.doi.org/10.2472/jsms.68.865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

IKADA, YOSHITO. „Fibers as Biomedical Materials“. Sen'i Gakkaishi 47, Nr. 3 (1991): P120—P125. http://dx.doi.org/10.2115/fiber.47.p120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ning, Chengyun, Lei Zhou und Guoxin Tan. „Fourth-generation biomedical materials“. Materials Today 19, Nr. 1 (Januar 2016): 2–3. http://dx.doi.org/10.1016/j.mattod.2015.11.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Vail, N. K., L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee und J. W. Barlow. „Materials for biomedical applications“. Materials & Design 20, Nr. 2-3 (Juni 1999): 123–32. http://dx.doi.org/10.1016/s0261-3069(99)00018-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hench, L. L. „Third-Generation Biomedical Materials“. Science 295, Nr. 5557 (08.02.2002): 1014–17. http://dx.doi.org/10.1126/science.1067404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lee, In-Seop, und Myron Spector. „Biomedical materials and 2013“. Biomedical Materials 8, Nr. 2 (25.03.2013): 020201. http://dx.doi.org/10.1088/1748-6041/8/2/020201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kutay, Sezer, Teoman Tincer und Nesrin Hasirci. „Polyurethanes as biomedical materials“. British Polymer Journal 23, Nr. 3 (1990): 267–72. http://dx.doi.org/10.1002/pi.4980230316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Plachá, Daniela, und Josef Jampilek. „Graphenic Materials for Biomedical Applications“. Nanomaterials 9, Nr. 12 (11.12.2019): 1758. http://dx.doi.org/10.3390/nano9121758.

Der volle Inhalt der Quelle
Annotation:
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hao, Yan Xia. „Research on Polymeric Biomedical Materials“. Applied Mechanics and Materials 484-485 (Januar 2014): 100–104. http://dx.doi.org/10.4028/www.scientific.net/amm.484-485.100.

Der volle Inhalt der Quelle
Annotation:
The article are outlined the medicinal use of polymer materials and characteristics and described its preparation method and application for controlled drug release from polymer, polymer drugs, pharmaceutical formulations and packaging polymer materials three aspects. Meanwhile elaborates a novel well dispersed MWCNTs PMAA/MWCNTs nanohybrid hydrogels. The introduction of MWCNTs significantly improved pH-responsive hydrogels and mechanical strength, and which depending on the composition ratio of MWCNTs, particle size and concentration of crosslinker. Study found that hybrid hydrogel swelling rate significantly faster than the pure PMAA hydrogel swelling behavior and this is explained. Compressive stress - strain was found, MWCNTs load transfer heterozygous for improving mechanical properties of the hydrogel network compression plays an important role. MTT cell compatibility evaluation proves that this astute hydrogel biomedical research in particular has potential application value.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ma, Jan, Tao Li, Yan Hong Chen, T. Han Lim und F. Y. C. Boey. „Piezoelectric Materials for Biomedical Applications“. Key Engineering Materials 334-335 (März 2007): 1117–20. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.1117.

Der volle Inhalt der Quelle
Annotation:
A piezoelectric microactuator for minimally invasive surgery procedures was developed using the piezoelectric tube actuator. The tube was fabricated by electrophoretic deposition of a doped PZT powders on the graphite rod substrate and co-sintering. The obtained tube shows maximum strain 0.045% in 31 mode and coercive field 1.5 kV/mm under static condition. Under dynamic condition, bending and longitudinal vibration modes can be identified from impedance spectrum and simulation. Theoretical analysis indicates that the displacement of the two modes depends on the geometry, material property, driving condition and damping conditions. The developed device uses bending mode to create rotation mechanical motion, and longitudinal mode to produce ultrasonic energy to soften and break up the target into fragments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Barud, Hernane S., und Frederico B. De Sousa. „Electrospun Materials for Biomedical Applications“. Pharmaceutics 14, Nr. 8 (26.07.2022): 1556. http://dx.doi.org/10.3390/pharmaceutics14081556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Murphy, Andrew F. „Biomedical Materials and Medicine Development“. Science Insights Materials and Chemistry 2016, Nr. 2016 (16.01.2016): 1–5. http://dx.doi.org/10.15354/simc.16.re012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mandal, Biman B., Chitta R. Patra und Subhas C. Kundu. „Biomedical materials research in India“. Biomedical Materials 17, Nr. 6 (05.09.2022): 060201. http://dx.doi.org/10.1088/1748-605x/ac8902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

HAYASHI, TOSHIO. „Elastic Materials for Biomedical Uses.“ NIPPON GOMU KYOKAISHI 71, Nr. 5 (1998): 243–50. http://dx.doi.org/10.2324/gomu.71.243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Shi, Donglu, und Hongchen Gu. „Nanostructured Materials for Biomedical Applications“. Journal of Nanomaterials 2008 (2008): 1–2. http://dx.doi.org/10.1155/2008/529890.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Falde, Eric J., Stefan T. Yohe, Yolonda L. Colson und Mark W. Grinstaff. „Superhydrophobic materials for biomedical applications“. Biomaterials 104 (Oktober 2016): 87–103. http://dx.doi.org/10.1016/j.biomaterials.2016.06.050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Adiga, Shashishekar P., Larry A. Curtiss, Jeffrey W. Elam, Michael J. Pellin, Chun-Che Shih, Chun-Ming Shih, Shing-Jong Lin et al. „Nanoporous materials for biomedical devices“. JOM 60, Nr. 3 (März 2008): 26–32. http://dx.doi.org/10.1007/s11837-008-0028-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Anderson, James M. „The future of biomedical materials“. Journal of Materials Science: Materials in Medicine 17, Nr. 11 (November 2006): 1025–28. http://dx.doi.org/10.1007/s10856-006-0439-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Narayan, Roger J., und Ryan K. Roeder. „Recent advances in biological materials science and biomedical materials“. JOM 62, Nr. 7 (Juli 2010): 38. http://dx.doi.org/10.1007/s11837-010-0106-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Covolan, Vera L., Roberta Di Ponzio, Federica Chiellini, Elizabeth Grillo Fernandes, Roberto Solaro und Emo Chiellini. „Polyurethane Based Materials for the Production of Biomedical Materials“. Macromolecular Symposia 169, Nr. 1 (Mai 2001): 273–82. http://dx.doi.org/10.1002/masy.200451428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Singh, Sonia. „Keratin - based materials in Biomedical engineering“. IOP Conference Series: Materials Science and Engineering 1116, Nr. 1 (01.04.2021): 012024. http://dx.doi.org/10.1088/1757-899x/1116/1/012024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Nedelcu, Ioan-Avram, Anton Ficai, Maria Sonmez, Denisa Ficai, Ovidiu Oprea und Ecaterina Andronescu. „Silver Based Materials for Biomedical Applications“. Current Organic Chemistry 18, Nr. 2 (31.01.2014): 173–84. http://dx.doi.org/10.2174/13852728113176660141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nikolova, Maria P., und Murthy S. Chavali. „Metal Oxide Nanoparticles as Biomedical Materials“. Biomimetics 5, Nr. 2 (08.06.2020): 27. http://dx.doi.org/10.3390/biomimetics5020027.

Der volle Inhalt der Quelle
Annotation:
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Li, Mu Qin, Han Song Yang, Li Jie Qu und Ming Hui Zhuang. „Study on Porous Titanium Biomedical Materials“. Key Engineering Materials 368-372 (Februar 2008): 1212–14. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1212.

Der volle Inhalt der Quelle
Annotation:
The bioactivity of porous titanium is poor. Alkali treatment and heat treatment were used in porous titanium to induce apatite biocoatings on the surface of porous titanium and improve the bioactivity of porous titanium. The results indicate that grass-blade fibre Na2TiO3 and amorphous rutile form on alkali and heat treatment samples and (102) plane Ti disappeared. Octacalcium phosphate (OCP) and Hydroxyapatite (HA) were found on the surface of samples in simulation body fluid (SBF) for 2w. The intensity of OCP and HA increased with time of samples in vivo increased. Ti-OH formed on the surface of the gel was explained by the point of view of negative and positive ion exchange. The mechanism of formation of OCP and HA induced by Na2TiO3 and TiO2 gel was studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Yamashita, Kimihiro. „Biomedical, Biofunctional and Bio-inspired Materials“. Journal of the Japan Society of Powder and Powder Metallurgy 52, Nr. 5 (2005): 346. http://dx.doi.org/10.2497/jjspm.52.346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chen, Xuesi. „Flourishing research in Chinese biomedical materials“. Chinese Science Bulletin 66, Nr. 18 (01.06.2021): 2215–16. http://dx.doi.org/10.1360/tb-2021-0362.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kokubo, Tadashi. „Novel Inorganic Materials for Biomedical Applications“. Key Engineering Materials 240-242 (Mai 2003): 523–28. http://dx.doi.org/10.4028/www.scientific.net/kem.240-242.523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yu, Lin, und Jiandong Ding. „Injectable hydrogels as unique biomedical materials“. Chemical Society Reviews 37, Nr. 8 (2008): 1473. http://dx.doi.org/10.1039/b713009k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Leal‑Egaña, Aldo, und Thomas Scheibel. „Silk-based materials for biomedical applications“. Biotechnology and Applied Biochemistry 55, Nr. 3 (12.03.2010): 155–67. http://dx.doi.org/10.1042/ba20090229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mansurov, Z. A., J. M. Jandosov, A. R. Kerimkulova, S. Azat, A. A. Zhubanova, I. E. Digel, I. S. Savistkaya, N. S. Akimbekov und A. S. Kistaubaeva. „Nanostructured Carbon Materials for Biomedical Use“. Eurasian Chemico-Technological Journal 15, Nr. 3 (13.05.2013): 209. http://dx.doi.org/10.18321/ectj224.

Der volle Inhalt der Quelle
Annotation:
One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic<br />of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pompe, W., H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber und K. Schulte. „Functionally graded materials for biomedical applications“. Materials Science and Engineering: A 362, Nr. 1-2 (Dezember 2003): 40–60. http://dx.doi.org/10.1016/s0921-5093(03)00580-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Qiu, Dong. „Testing polymeric materials for biomedical applications“. Polymer Testing 73 (Februar 2019): A1. http://dx.doi.org/10.1016/j.polymertesting.2018.12.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Hammond, Paula T. „Building biomedical materials layer-by-layer“. Materials Today 15, Nr. 5 (Mai 2012): 196–206. http://dx.doi.org/10.1016/s1369-7021(12)70090-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Tang, Zhaohui, Chaoliang He, Huayu Tian, Jianxun Ding, Benjamin S. Hsiao, Benjamin Chu und Xuesi Chen. „Polymeric nanostructured materials for biomedical applications“. Progress in Polymer Science 60 (September 2016): 86–128. http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Dee, Kay C., David Puleo und Rena Bizios. „Engineering of materials for biomedical applications“. Materials Today 3, Nr. 1 (2000): 7–10. http://dx.doi.org/10.1016/s1369-7021(00)80003-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Yang, Yuqi, Abdullah Mohamed Asiri, Zhiwen Tang, Dan Du und Yuehe Lin. „Graphene based materials for biomedical applications“. Materials Today 16, Nr. 10 (Oktober 2013): 365–73. http://dx.doi.org/10.1016/j.mattod.2013.09.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Li, Yi-Chen Ethan. „Sustainable Biomass Materials for Biomedical Applications“. ACS Biomaterials Science & Engineering 5, Nr. 5 (22.03.2019): 2079–92. http://dx.doi.org/10.1021/acsbiomaterials.8b01634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sinha, M. K., B. R. Das, D. Bharathi, N. E. Prasad, B. Kishore, P. Raj und K. Kumar. „Electrospun Nanofibrous Materials for Biomedical Textiles“. Materials Today: Proceedings 21 (2020): 1818–26. http://dx.doi.org/10.1016/j.matpr.2020.01.236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Niinomi, Mitsuo. „Recent metallic materials for biomedical applications“. Metallurgical and Materials Transactions A 33, Nr. 3 (März 2002): 477–86. http://dx.doi.org/10.1007/s11661-002-0109-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Li, Linqing, und Kristi L. Kiick. „Resilin-Based Materials for Biomedical Applications“. ACS Macro Letters 2, Nr. 8 (11.07.2013): 635–40. http://dx.doi.org/10.1021/mz4002194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yu, Jicheng, Yuqi Zhang, Xiuli Hu, Grace Wright und Zhen Gu. „Hypoxia-Sensitive Materials for Biomedical Applications“. Annals of Biomedical Engineering 44, Nr. 6 (29.02.2016): 1931–45. http://dx.doi.org/10.1007/s10439-016-1578-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kokubo, Tadashi. „Novel Biomedical Materials Based on Glasses“. Materials Science Forum 293 (August 1998): 65–82. http://dx.doi.org/10.4028/www.scientific.net/msf.293.65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie