Dissertationen zum Thema „Biomedical materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Biomedical materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Cabanach, Xifró Pol. „Zwitterionic materials for biomedical applications“. Doctoral thesis, Universitat Ramon Llull, 2021. http://hdl.handle.net/10803/671831.
Der volle Inhalt der QuelleLa respuesta de nuestro cuerpo a los biomateriales supone un gran obstáculo para la efectividad de múltiples terapias basadas en los biomateriales. Accionados por la absorción de biomoléculas en la superficie del material, barreras como el sistema inmune o las superficies mucosas eliminan los materiales del cuerpo, evitando que lleguen a su destino y realicen su función. Los materiales zwitteriónicos han emergido en los últimos años como materiales antiadherentes prometedores para superar las barreras mencionadas. Aunque muchos sistemas utilizan materiales zwitteriónicos como recubrimientos, sus propiedades únicas de superhidrofilicidad i versatilidad química sugieren múltiples beneficios en utilizarlos como material principal. Aquí, dos sistemas basados en materiales zwitteriónicos son presentados. En primer lugar, una plataforma para la liberación de fármaco antiadherente basada en copolímeros de bloque amfifílicos (CBA) es desarrollada. Los CBA zwitteriónicos son sintetizados y optimizados para que se auto-organicen en nanopartículas zwitteriónicas. Las propiedades antiadherentes de estas nanopartículas son probadas, al igual que su potencial para convertirse en un sistema oral de liberación de fármaco. Seguidamente, el sistema se utiliza como portador para fármacos animalarios y anticancerígenos. Las nanopartículas muestran internalización en eritrocitos infectados por Plasmodio, y nanopartículas cargadas con curcumina demuestran su eficacia contra la malaria in vitro. Se observa la absorción oral de polímero y curcumina in vivo utilizando un modelo de ratón, indicando el potencial del sistema para convertirse en una terapia oral contra malaria. Cuando se optimiza el sistema para la terapia contra el cáncer, las nanopartículas cargadas con Paclitaxel exhiben actividad anticancerígena en modelos in vitro de células cancerosas. En segundo lugar, microrobots zwitteriónicos no-inmunológicos que pueden evitar el reconocimiento por parte del sistema inmune son introducidos. Se desarrolla una fotoresisténcia zwitteriónica para la microimpresión de microrobots zwitteriónicos a través de la polimerización de dos fotones con una amplia funcionalización: propiedades mecánicas variables, anti-bioadhesión i propiedades no-inmunogénicas, funcionalización para la actuación magnética, encapsulación de biomoléculas i modificación superficial para la liberación de fármaco. Los robots invisibles evitan que los macrófagos del sistema inmune innato los detecten después de una inspección exhaustiva (de más de 90 horas), hecho que no se ha conseguido hasta la fecha por ningún sistema microrobótico. Estos materiales zwitteriónicos versátiles eliminan uno de los grandes obstáculos en el desarrollo de microrobots biocompatibles, y servirán como una caja de herramientas de materiales no-inmunogénicos para crear robots biomédicos y otros dispositivos para la bioingeniería y para las aplicaciones biomédicas.
Body response to biomaterials suppose a major roadblock for the effectiveness of multiple biomaterial-based therapies. Triggered by unspecific absorption of biomolecules in the material surface, barriers such as immune system or mucosal surfaces clear foreign materials from the body, preventing them to reach their target and perform their function. Zwitterionic materials have emerged in the last years as promising antifouling materials to overcome the mentioned barriers. Although many systems have used zwitterionic materials as coatings, the unique properties of superhydrophilicity and chemical versatility suggest multiple benefits of using zwitterionic polymers as bulk materials. Here, two different systems based on zwitterionic materials are presented. In first place, an antifouling drug delivery platform based on zwitterionic amphiphilic polymers (ABC) is developed. Zwitterionic ABCs are synthetized and optimized to self-assemble in zwitterionic nanoparticles. The antifouling properties of zwitterionic nanoparticles are proved, together with their potential to become an oral drug delivery system. Next, the system is used as a drug carrier for antimalarial and anticancer drugs. Nanoparticles show internalization in Plasmodium infected erythrocytes, and curcumin-loaded nanoparticles prove their antimalarial efficacy in vitro. Oral absorption of polymer and curcumin is also observed in vivo using mice model, indicating the potential of this system to become oral therapy against malaria. When optimizing the system for anticancer therapy, Paclitaxel-loaded nanoparticles exhibit anticancer activity in in vitro cancer cell models. Second, non‐immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Zwitterionic photoresist are developed for the 3D microprinting of zwitterionic hydrogel microrobots through 2-photon polymerization with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (> 90 h), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Parker, Rachael N. „Protein Engineering for Biomedical Materials“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77416.
Der volle Inhalt der QuellePh. D.
Almeida, José Carlos Martins de. „Hybrid materials for biomedical applications“. Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15973.
Der volle Inhalt der QuelleThe increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.
O aumento da longevidade dos seres humanos e a procura de uma melhor qualidade de vida têm conduzido a uma pesquisa contínua de novos materiais para implantes. O desenvolvimento científico, juntamente com uma crescente multidisciplinaridade entre as ciências dos materiais e as ciências da vida deram origem a novas abordagens, como a medicina regenerativa e a engenharia de tecidos. A busca de um material com propriedades mecânicas próximas das do osso humano produziu uma nova família de materiais híbridos que tiram partido da sinergia entre os domínios inorgânicos de sílica (SiO4), com base em composições de vidros bioativos obtidos por sol-gel, e os domínios orgânicos de polidimetilsiloxano, PDMS ((CH3)2.SiO2)n. Vários estudos têm demonstrado que os materiais híbridos baseados no sistema PDMS-SiO2 constituem um grupo de biomateriais promissores com várias aplicações potenciais tais como a regeneração de tecido ósseo e a recuperação do tecido cerebral, passando por revestimentos bioativos e sistemas de libertação controlada de fármacos. O objetivo do presente trabalho foi preparar materiais híbridos para aplicações biomédicas com base no sistema PDMS-SiO2 e contribuir para uma melhor compreensão das relações entre as condições de processamento sol-gel, as estruturas químicas, a microestrutura e as propriedades macroscópicas. Para alcançar tal objetivo, foram usadas diferentes técnicas de caracterização: espectroscopia de infravermelho por transformada de Fourier, ressonância magnética nuclear no estado sólido e no estado líquido, difração de raios-X, dispersão de raios-X de baixo ângulo, dispersão de neutrões de baixo ângulo, análise da área de superfície pelo método de Brunauer–Emmett–Teller, microscopia eletrónica de varrimento e microscopia eletrónica de transmissão. A rugosidade e a molhabilidade das superfícies foram analisadas por perfilometria óptica 3D e por medidas de ângulo de contacto, respectivamente. A bioatividade in vitro foi avaliada através de testes de imersão em plasma sintético e posterior observação da superfície dos materiais e análise do líquido sobrenadante por espectrometria de emissão atômica por plasma acoplado Indutivamente. A biocompatibilidade in vitro foi avaliada usando células osteoblásticas MG63. Materiais do sistema PDMS-SiO2-CaO foram inicialmente preparados usando o nitrato como fonte de cálcio. Para eliminar os resíduos de nitrato no produto final, devido à sua potencial toxicidade, é necessária uma etapa de tratamento térmico (acima dos 400° C). A fim de aumentar a estabilidade térmica dos materiais submetidos a altas temperaturas, foi adicionado titânio ao sistema híbrido. Obteve-se assim um material híbrido contendo cálcio, sem vestígios de nitrato, mantendo-se uma quantidade significativa de grupos metilo. A dificuldade de obter amostras monolíticas de híbridos PDMS-SiO2-CaO por síntese sol-gel e posterior tratamento térmico para eliminação de nitratos, criou um novo objetivo: a procura de fontes alternativas de cálcio. Novas fontes de cálcio foram avaliadas para substituir o nitrato tendo-se escolhido o acetato de cálcio devido à sua boa solubilidade em água. Estabeleceram-se protocolos de preparação por sol-gel a partir dos quais se obtiveram amostras monolíticas homogéneas. Além de melhorar a bioatividade, o titânio e o zircónio influenciam as características estruturais e microestruturais dos sistemas binários SiO2-TiO2 e SiO2-ZrO2, bem como dos sistemas PDMS-TiO2 e PDMS-ZrO2. Neste contexto, foram estudadas diferentes condições experimentais no processo sol-gel, de modo a compreender o papel destes aditivos no sistema SiO2-PDMS. Concluiu-se que o titânio e o zircónio influenciam a cinética do processo sol-gel devido à diferente reatividade dos despectivos alcóxidos, conduzindo à obtenção de xerogéis híbridos com diferentes características e morfologias. O isopropóxido de titânio, menos reativo do que o propóxido de zircónio, foi escolhido como fonte de titânio, usado como aditivo no sistema PDMS-SiO2CaO. Dois procedimentos diferentes de preparação por sol-gel foram seguidos, utilizando a mesma composição de base e o acetato de cálcio como fonte de cálcio. Foram obtidas diferentes microestruturas muito hidrofóbicas e ambas mostraram ser biocompatíveis após serem testadas com células osteoblásticas MG63. Finalmente, foi avaliado o papel do estrôncio (conhecido nos biovidros por favorecer a formação de tecido ósseo e reduzir a sua reabsorção) no sistema híbrido PDMS-CaO-SiO2-TiO2. O material produzido revelou-se biocompatível, através de testes com células osteoblásticas MG63, e com a capacidade de libertar estrôncio dentro dos limites considerados adequados para a reparação do tecido ósseo.
Sanami, Mohammad. „Auxetic materials for biomedical applications“. Thesis, University of Bolton, 2015. http://ubir.bolton.ac.uk/785/.
Der volle Inhalt der QuelleCapuccini, Chiara <1979>. „Biomimetic Materials for Biomedical Applications“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/1/chiara_capuccini_tesi.pdf.
Der volle Inhalt der QuelleCapuccini, Chiara <1979>. „Biomimetic Materials for Biomedical Applications“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/.
Der volle Inhalt der QuelleNiu, Ye. „Microparticulate Hydrogel Materials Towards Biomedical Applications“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586094812805108.
Der volle Inhalt der QuelleLiong, Monty. „Biomedical applications of mesostructured silica materials“. Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905693461&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleHercus, Beth Justine. „Modelling T lymphocyte reactions to biomedical materials“. Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423016.
Der volle Inhalt der QuelleLeadley, Robert Stuart. „The surface characterisation of novel biomedical materials“. Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259860.
Der volle Inhalt der QuelleParsons, Andrew James. „Supercritical fluid assisted production of biomedical materials“. Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275952.
Der volle Inhalt der QuelleHaq, Bibi Safia. „Laser structuring of materials for biomedical applications“. Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:8727.
Der volle Inhalt der QuelleHughes, Victoria A. „Luminescent materials for biomedical and technological applications“. Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa43025.
Der volle Inhalt der QuelleChristiansen, Michael G. (Michael Gary). „Magnetothermal multiplexing for biomedical applications“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111248.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 170-176).
Research on biomedical applications of magnetic nanoparticles (MNPs) has increasingly sought to demonstrate noninvasive actuation of cellular processes and material responses using heat dissipated in the presence of an alternating magnetic field (AMF). By modeling the dependence of hysteresis losses on AMF amplitude and constraining AMF conditions to be physiologically suitable, it can be shown that MNPs exhibit uniquely optimal driving conditions that depend on controllable material properties such as magnetic anisotropy, magnetization, and particle volume. "Magnetothermal multiplexing," which relies on selecting materials with substantially distinct optimal AMF conditions, enables the selective heating of different kinds of collocated MNPs by applying different AMF parameters. This effect has the potential to extend the functionality of a variety of emerging techniques with mechanisms that rely on bulk or nanoscale heating of MNPs. Experimental investigations on methods for actuating deep brain stimulation, drug release, and shape memory polymer response are summarized, with discussion of the feasibility and utility of applying magnetothermal multiplexing to similar systems. The possibility of selective heating is motivated by a discussion of various models for heat dissipation by MNPs in AMFs, and then corroborated with experimental calorimetry measurements. A heuristic method for identifying materials and AMF conditions suitable for multiplexing is demonstrated on a set of iron oxide nanoparticles doped with various concentrations of cobalt. Design principles for producing AMFs with high amplitude and ranging in frequency from 15kHz to 2.5MHz are explained in detail, accompanied by a discussion of the outlook for scalability to clinically relevant dimensions. The thesis concludes with a discussion of the state of the field and the broader lessons that can be drawn from the work it describes.
by Michael G. Christiansen.
Ph. D.
Bonfanti, Alessandra. „Mechanics of structured materials and their biomedical applications“. Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/413810/.
Der volle Inhalt der QuellePalsule, Aniruddha. „Silicone and Fluorosilicone Based Materials for Biomedical Applications“. University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282059072.
Der volle Inhalt der QuelleSkvortsova, Yulia Alexandrovna Geng M. Lei. „Simulation of tissues for biomedical applications“. [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/436.
Der volle Inhalt der QuelleFang, Liming. „Processing of UHMWPE and HA/UHMWPE nanocomposite for biomedical applications /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20FANG.
Der volle Inhalt der QuelleÖberg, Hed Kim. „Advanced polymeric scaffolds for functional materials in biomedical applications“. Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Der volle Inhalt der QuelleQC 20140116
Passero, Anthony. „Microwave Assisted Calcium Phosphate Coating of Biomedical Implant Materials“. University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1429188729.
Der volle Inhalt der QuellePark, Jongee. „Development Of A Glass-ceramic For Biomedical Applications“. Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609331/index.pdf.
Der volle Inhalt der Quelle#8226
SiO2] crystals as the predominant crystalline phases, (A-W glass-ceramics) were produced through controlled crystallization of the glasses in the MgO-CaO-SiO2-P2O5-F system. Phases formed in the crystallized counterpart of the glasses were identified by powder X-ray diffraction (XRD) analysis. The crystal morphology of the resultant glass-ceramics was examined using a scanning electron microscope (SEM). The crystallization kinetic parameters consisting of the activation energy for crystallization, (E), the Avrami parameter, (n), and frequency factor of the glass were determined with regard to small amount of TiO2 additions using non-isothermal differential thermal analysis (DTA). The values for E and n for apatite and wollastonite were 460 kJ/mol and 433 kJ/mol, and 3.1±
0.1 and 1.5±
0.1, respectively. When 4 wt% TiO2 was incorporated into the base glass, the values for E decreased to 408 and 320 kJ/mol for apatite and wollastonite, respectively
but the values for n increased from 3.1±
0.1 to 3.3±
0.1, and from 1.5±
0.1 to 1.9±
0.1 for apatite and wollastonite, respectively. TiO2 is an effective nucleating agent in this glass system for promoting the precipitation of both apatite and wollastonite crystals. Structure oriented changes in the indentation microhardness and tribological properties of the A-W glass-ceramics were evidenced. The microhardness at the free surface was 650±
12 HV, but decreased with increasing depth distance from the free surface and attained 520±
8 HV at a distance 0.5 mm below the free surface. The wear rate at the free surface was 0.7±
0.05 ×
10-4 mm3/Nm, but increased as the distance from the free surface increased and became 2.9±
0.15 ×
10-4 mm3/Nm at a distance 0.5 mm below the free surface. Tribological properties of the A-W glass-ceramics were compared with those of commercially available dental ceramics including IPS Empress 2®
, Cergo Pressable Ceramic®
, Cerco Ceram®
, Super porcelain EX-3®
, and bovine enamel. The wear rate, friction coefficient, and wear mechanisms of the A-W glass-ceramics were similar to currently used artificial dental materials.
Lordeus, Makensley. „Enhanced Flexible Materials for Valve Prosthesis Applications“. FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2315.
Der volle Inhalt der QuelleFreij-Larsson, Christina. „Surface modification of biomedical polyurethanes“. Lund : Dept. of Chemical Engineering II, Lund University, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38985470.html.
Der volle Inhalt der QuelleVogt, Carmen Mihaela. „Engineered core-shell nanoparticles for biomedical applications“. Licentiate thesis, KTH, Functional Materials, FNM, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12708.
Der volle Inhalt der QuelleThe necessity for synthesis of nanoparticles with well controlled size and morphology emerged with the development in recent years of novel advanced applications especially in biomedical related fields. These applications require nanoparticles with more complex architecture such as multifunctional nanoparticles (i.e. core–shell structures) that can carry several components with different embedded functionalities. In this thesis, we developed core–shell nanoparticles (CSNPs) with finely tuned silica shell on iron oxide core as model system for advanced applications in nanomedicine such as MRI, drug delivery and hyperthermia.
The synthesis of monodispersed, and well separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Substantial amount of aggregated and multicore CSNPs are generally the undesired outcome. In this thesis, synthesis of monodispersed, free of necking, single core iron oxide-SiO2 different distinct overall size and tuneable shell thickness was performed using an inverse microemulsion method. The influence of the reaction time, hydrodynamic conditions and precursor concentration on the synthesis process and thickness of the silica layer was investigated and the process was optimised. The residual reactions during the post synthesis processing were inhibited using a combination of pH adjustment and alternating shock freezing with ultracentrifuging.
The second part of the thesis is concerning thorough characterisation of the CSNPs with different shell thickness. The non-aggregated tuneable shell CSNPs maintained the superparamagnetic character of the cores with high magnetisation, showing great potential for their applications in nanomedicine. Magnetic measurements and relaxivity tests were performed and the comparison of the CSNPs with commercial products revealed the fact that relaxation time ratios (r2/r1) obtained are higher than those of the commercially available MRI contrast agents which indicates a better T2 contrast.
In the last part of the thesis the in-vitro toxicity investigation results are reported. For the investigation of cytotoxicity (3- 4, 5-dimethyldiazol-2-yl)-2, 5 diphenyl-tetrazolium bromide (MTT) assay was performed and the secretion of pro-inflammatory cytokines TNF-α and IL-6 was determined using enzyme-linked immunosorbent assay (ELISA). The cells were exposed to a wide range of concentrations of nanoparticles (between 0.5 μg/ml to 100 μg/ml). The cell toxicity results indicated no severe toxic effects on human monocyte-derived macrophages (HMDM) as model system. The internalisation of the nanoparticles by HMDM was monitored using transmission electron microscopy (TEM).
The CSNPs have the capacity of forming stable colloidal dispersions at physiological pH, with desired magnetic properties, low toxicity, and the potential for further functionalisation via surface modification of the silica shell or by adding new components (i.e. quantum dots, therapeutics). These characteristics make them highly promising for drug delivery, medical imaging, hyperthermia, magnetic cell marking and cell separation as well as many other biomedical applications.
QC 20100506
Rush, Tabitha. „Hemostatic Mechanisms of Common Textile Wound Dressing Materials“. NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03302010-230342/.
Der volle Inhalt der QuelleFelip, León Carlos. „Molecular Nanoparticles and Gels: Materials for Biomedical and Photonic Applications“. Doctoral thesis, Universitat Jaume I, 2018. http://hdl.handle.net/10803/587103.
Der volle Inhalt der QuelleL'objectiu general de la tesi és l'estudi i desenvolupament de molècules de baix pes molecular que s'auto-assemblen per a ser utilitzades en aplicacions fotòniques i biomèdiques. Es sintetitzaran i caracteritzaran noves famílies de gelants de baix pes molecular derivats d'aminoàcids que tenen fraccions fluorescents. S'avaluarà el procés de transferència d'energia que es duu a terme en gels moleculars reversibles auto-assemblats com a possible símil de sistemes naturals. S'estudiarà la construcció d'un nou gel versàtil que respongui als estímuls i que sofreix fenòmens d'emissió induïts per agregació degut a l'auto-organització en fibres. S'estudia la miniaturització de gels moleculars macroscòpics en nano i microgels moleculars. Es realitzarà un estudi fonamental d'un nou material híbrid basat en les relacions estructurals i energètiques entre dues àrees d'interès: Els gels moleculars fluorescents i les nanopartícules de conversió ascendent. S'estudia el comportament del cromòfor 4-amino-1,8-naftalimida en sistemes autoensamblats com a sensor d'òxid nítric (NO).
Ye, Fei. „Chemically Synthesized Nano-Structured Materials for Biomedical and Photonic Applications“. Doctoral thesis, KTH, Funktionella material, FNM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96261.
Der volle Inhalt der QuelleQC 20120605
Lobb, Emma Janice. „Synthesis and characterisation of novel polymeric materials for biomedical applications“. Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326932.
Der volle Inhalt der QuelleOlofsson, Kristina. „Thiol-Ene CHemistry and Dopa-Functional Materials towards Biomedical Applications“. Doctoral thesis, KTH, Ytbehandlingsteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180716.
Der volle Inhalt der QuelleReaktioner mellan tioler och omättade kemiska föreningar utgör ett mångsidigt och effektivt redskap inom polymersyntes. I denna avhandling har begreppet tiol-en kemi varit centralt och kemin har använts för syntes av såväl väldefinierade hydrogeler som dopa-funktionella material. Dessa material har sedan utvärderats mot biomedicinska tillämpningar såsom hydrogeler, primers för fixering av benfrakturer, självläkande geler och kontrollerad läkemedelsleverans. Tiol-en-kemi har i denna avhandling använts för att framställa väldefinierade hydrogeler som sedan utvärderats med avseende på hur strukturen påverkar egenskaper såsom svällningsgrad, styvhet och nedbrytningshastighet. Det visade sig att alla dessa egenskaper är relaterade till varandra och att lösare tvärbundna hydrogeler uppvisar högre svällning, lägre styvhet och högre nedbrytningshastigheter. Marina musslor har en exceptionell förmåga att fästa mot olika ytor och på grund av detta har det visats en hel del intresse för dopa-funktionella material genom åren. På jakt efter en primer för att öka vidhäftningen hos benlim proponerades därför föreningar med dopafunktionella grupper. Det visade sig att dopaminderivat kunde förbättra vidhäftningen mot ben och det visade sig även att tillsats av natriumhydroxid var viktigt för att uppnå god vidhäftningsförmåga. Den starkaste vidhäftning uppnåddes när derivat med tiol och omättade bindningar användes i kombination. Syntes av dopafunktionella material involverar ofta flera reaktionssteg och en förenklad syntesväg är därför att eftersträva. UV-initierad tiol-en-kemi undersöktes därför som en möjlig syntesväg för att framställa dopafunktionella polymerer. Polymererna visade sig ha självläkande egenskaper vid komplexbildning med järnjoner. Slutligen användes denna syntesväg för att framställa blocksampolymerer. Dessa blocksampolymerer användes sedan för att bilda miceller med lovande resultat vid utvärdering för leverans av läkemedel mot bröstcancer.
QC 20160125
Chu, Kuan Wu. „Ultra-stable and Antifouling Glycine Derived Materials for Biomedical Applications“. University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1619658749284481.
Der volle Inhalt der QuelleWalia, Rashi. „Solid-Hydrogel Hybrid Structural Materials for Biomedical Devices and Applications“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29549.
Der volle Inhalt der QuelleHoffmann, Ilona. „MAGNESIUM-TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS“. UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/36.
Der volle Inhalt der QuelleMagdon, Ismail Fathuma Shaira. „Surface engineering of biomaterials for optimal bone bonding characteristics“. Phd thesis, School of Aerospace, Mechanical and Mechatronic Engineering, 2008. http://hdl.handle.net/2123/6612.
Der volle Inhalt der QuelleSmith, Steven P. „Lanthanide-containing Nanostructured Materials“. Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145459.
Der volle Inhalt der QuelleBritto, Carlos Eduardo Silva. „Influência da orientação de prototipagem no comportamento mecânico da liga Ti-6Al-4V produzida por sinterização direta de metal por laser (DMLS) /“. Ilha Solteira, 2015. http://hdl.handle.net/11449/145475.
Der volle Inhalt der QuelleBanca: Juno Gallego
Banca: Maria Aparecida Larosa
Resumo: Este trabalho tem por objetivo realizar uma análise das propriedades mecânicas e microestruturais de componentes da liga Ti-6Al-4V produzidos pelo processo de Sinterização Direta de Metal por Laser (DMLS) que se baseia na deposição de camadas de um pó metálico que posteriormente são fundidas através de um feixe de laser de alta potência. Sendo assim, foram produzidos componentes em três orientações diferentes (A, B e C) com o propósito de verificar a influência das camadas sobre as propriedades mecânicas e nos micromecanismos de fratura, através dos ensaios de tração, fadiga e tenacidade à fratura e microscopia eletrônica de varredura (MEV). As amostras também foram submetidas a um tratamento térmico para alívio de tensões residuais provenientes do processo de fabricação e posteriormente analisadas através de microscopia óptica e difração de raios-X, para averiguar se houve mudanças em sua microestrutura ou decomposição de fase em relação a uma amostra sem tratamento térmico na condição "como produzida". As orientações de construção B e C apresentaram melhores valores em todos os ensaios mecânicos quando comparados à orientação A, evidenciando assim que houve perda de resistência mecânica, exceto no ensaio de microdureza, onde os valores médios não tiveram grandes variações com a orientação de manufatura. A amostra "como produzida" apresentou maiores valores de dureza quando comparada às amostras com tratamento de alívio de tensões residuais, fato este que ocorreu devido à precipitação da fase B e crescimento da fase a no material, que inicialmente apresentava uma estrutura composta por martensita hexagonal (a')
Abstract: This work has as objective to realize analysis of the mechanical and microstructural properties of Ti-6Al-4V alloy components produced by the Direct Metal Laser Sintering (DMLS) process that is based on the deposition of a metal powder layers and posteriorly fused by a high power laser beam. Therefore, components were produced in three different orientations (A, B and C) in order to verify the influence of the layers deposition on the mechanical properties and fracture micromechanisms, through the tensile tests, fatigue and tenacity of fracture and scanning electron microscopy (SEM). The samples were also subjected to a heat treatment to relieve residual stresses resulting from the manufacturing process and after analyzed through a optical microscopy and X-ray diffraction, to ascertain if there were changes in the microstructure or phase decomposition in relation to a sample without a heat treatment and at "as manufactured" condition. The construction orientation B and C have had better values in all mechanical tests when compared to the orientation A, revealing that had a loss of mechanical strength, except in the microhardness test, where the average values did not have large variations in the orientation of manufacturing. The sample "as manufactured" presented higher hardness values when compared to samples with treatment to relieve the residual stress, and this fact occurred due the precipitation of the B phase and the growth of the a phase in the material, which initially had a structure consisting of martensite hexagonal (a')
Mestre
Britto, Carlos Eduardo Silva [UNESP]. „Influência da orientação de prototipagem no comportamento mecânico da liga Ti-6Al-4V produzida por sinterização direta de metal por laser (DMLS)“. Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/145475.
Der volle Inhalt der QuelleEste trabalho tem por objetivo realizar uma análise das propriedades mecânicas e microestruturais de componentes da liga Ti-6Al-4V produzidos pelo processo de Sinterização Direta de Metal por Laser (DMLS) que se baseia na deposição de camadas de um pó metálico que posteriormente são fundidas através de um feixe de laser de alta potência. Sendo assim, foram produzidos componentes em três orientações diferentes (A, B e C) com o propósito de verificar a influência das camadas sobre as propriedades mecânicas e nos micromecanismos de fratura, através dos ensaios de tração, fadiga e tenacidade à fratura e microscopia eletrônica de varredura (MEV). As amostras também foram submetidas a um tratamento térmico para alívio de tensões residuais provenientes do processo de fabricação e posteriormente analisadas através de microscopia óptica e difração de raios-X, para averiguar se houve mudanças em sua microestrutura ou decomposição de fase em relação a uma amostra sem tratamento térmico na condição como produzida. As orientações de construção B e C apresentaram melhores valores em todos os ensaios mecânicos quando comparados à orientação A, evidenciando assim que houve perda de resistência mecânica, exceto no ensaio de microdureza, onde os valores médios não tiveram grandes variações com a orientação de manufatura. A amostra como produzida apresentou maiores valores de dureza quando comparada às amostras com tratamento de alívio de tensões residuais, fato este que ocorreu devido à precipitação da fase B e crescimento da fase a no material, que inicialmente apresentava uma estrutura composta por martensita hexagonal (a')
This work has as objective to realize analysis of the mechanical and microstructural properties of Ti-6Al-4V alloy components produced by the Direct Metal Laser Sintering (DMLS) process that is based on the deposition of a metal powder layers and posteriorly fused by a high power laser beam. Therefore, components were produced in three different orientations (A, B and C) in order to verify the influence of the layers deposition on the mechanical properties and fracture micromechanisms, through the tensile tests, fatigue and tenacity of fracture and scanning electron microscopy (SEM). The samples were also subjected to a heat treatment to relieve residual stresses resulting from the manufacturing process and after analyzed through a optical microscopy and X-ray diffraction, to ascertain if there were changes in the microstructure or phase decomposition in relation to a sample without a heat treatment and at as manufactured condition. The construction orientation B and C have had better values in all mechanical tests when compared to the orientation A, revealing that had a loss of mechanical strength, except in the microhardness test, where the average values did not have large variations in the orientation of manufacturing. The sample as manufactured presented higher hardness values when compared to samples with treatment to relieve the residual stress, and this fact occurred due the precipitation of the B phase and the growth of the a phase in the material, which initially had a structure consisting of martensite hexagonal (a')
Spear, Rose Louis. „Peptide functionalisation of carbon nanomaterials for biomedical applications“. Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609475.
Der volle Inhalt der QuelleDíez, Gil César. „Processing and structuring of molecular materials for environmental and biomedical applications“. Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/32071.
Der volle Inhalt der QuelleDuring the last decades the construction of devices based on molecular functional materials with specific properties has become one of the major objectives of materials scientists, since they can offer new and exciting functionalities to the present human activities. Although their basic properties will be guided by the fundamental -electronic, magnetic, optical, mechanical, etc- properties of their molecular constituent units, the final functionality of a device will depend, in a major way, on the processing and structuring techniques used during its construction. In this context, the main objective of this Thesis has been the use of different processing and structuring techniques for the development of new functional materials based on already tested environmentally and biologically active compounds. Among all the environmentally hazardous substances present in our environment, heavy metal ions, and specially mercury, are highly toxic elements which contamination, due to both natural and anthropogenic reasons, has become severe in some parts of the world, resulting in health damage to their inhabitants. Therefore, the developing of new sensors able to detect selectively and sensitively Hg2+ on aqueous media is still an actual challenge. In this work we present two 1,4-disubstituted-2,3-diaza-1,3-butadiene derivatives (1 and 2) able to selectively perform optical detection of Hg2+ in aqueous media, that combined with different nanostructuring and anchoring techniques allowed us to obtain highly sensitive solid-supported mercury detection systems. The first of them is based on the physisorption of the diaza butadiene indicators on porous cellulose membranes obtaining indicator coated probes that could be used as new cheap and reliable Hg2+ sensing systems. In order to do that, two different structuring techniques have been used. The most intuitive one, which we have named “developing technique”, is founded on the use of the optically active Hg2+ organic receptor 1 as a Hg2+ developing agent of a cellulose substrate, previously impregnated with the contaminated solution. Although Hg2+ detection tests performed using this colorimetric chemosensing probes, based on receptor 1, showed good selectivity and reproducibility, they presented a limited sensitivity vs. Hg2+. The detection limit of the probes was set on tens of ppm (10−2g/l), far away from the 1 ppb (μg/l) fixed by the European Union (EU) and the North American Environmental Protection Agency (EPA) as the maximum amount of Hg2+ allowed in drinkable water. Nevertheless, this procedure served as a prove of concept for the developing of probes based on the use of cheap and renewable materials to be applied on the in situ detection of contaminants. The other structuring technique used is based on a new physisorption procedure, involving the production and deposition of nanoparticles of the organic sensing molecules on nanoporous cellulose membranes for the fabrication of hybrid membranes. In this case, excellent Hg2+ detection results showing a high Hg2+ sensitivity and selectivity were obtained for the receptor 2 based cellulose probes. In contrast to the previous case, the detection limit obtained matched the EU and EPA requirements for drinkable water, reaching the level of ppb (μg/l). On a second approach the covalent bonding was used as a driving force for the receptor anchoring onto a solid substrate. In this case we developed a surface plasmon resonance (SPR) sensor able to perform picomolar detection of Hg2+ on aqueous systems. The rational design of the Hg2+ receptors (3 and 4) optimizes the sensitivity and reliability of the sensor allowing us to selectively detect, in presence of other divalent cations, Hg2+ concentrations on aqueous systems on the picomolar range, meliorating on three orders of magnitude the EU and EPA Hg2+ detection limit on drinkable water. As contamination control and pollutant removal, regenerative medicine in general and particularly in tissue engineering (TE) has the enormous potential of improving the quality of life for many thousands of people throughout the world. Although most of the more commonly used biomaterials match all the structural and mechanical resistance requirements to be applied in regenerative medicine, the interaction of such materials with the surrounding biological media is still not well controlled, leading to undesired immunological responses such as infections or uncontrolled inflammation in some cases. The work developed on the second part of this thesis has been focused on the study, characterization and processing of a new kind of proteinaceous nanoparticulate biomaterial, known as inclusion bodies (IBs), as a promising additive for cell proliferation enhancement. The first part of the research regarding the processing and structuring of biologically active materials is centered on the characterization of the nanoscale, physicochemical and structural properties of a novel family of proteinaceous aggregates known as “inclusion bodies” (IBs). Thus, IBs coming from different genetic backgrounds have been characterized by means of light dispersion and surface analysis techniques, such as dynamic light scattering (DLS), atomic force microscopy (AFM) or contact angle (CA). Results obtained indicated that IBs produced in absence of different elements of the cellular heat shock machinery (DnaK, ClpA, and ClpP genes) exhibit a range of sizes, wettability and stiffness values, that let us conclude the existence of a direct relationship between the conformation status of the recombinant proteins inside the IBs and their physicochemical and structural properties. Randomly distributed IBs, from different genetic backgrounds, were used to decorate amine terminated silicon surfaces. It was possible to observe how cultured mammalian cells respond differentially to IB variants when used as particulate materials to engineer the physicochemical surface properties, proving that the actual range of referred mechanical as well as other physicochemical properties is sensed and discriminated by biological systems. To further prove the validity of IBs as stimulator of cell proliferation, microstructuring of the IBs onto the same substrate was performed using the Microcontact Printing (μCP) technique. The obtained results confirmed again the ability of IBs to stimulate cell proliferation on surfaces initially not suitable for cell growth. Therefore, it is possible to conclude that the tuning opportunities offered through adjusting the genetic background of the cell where the IBs are produced, definitively expands the spectrum of biomedical applications of this novel bacterial nanomaterial.
Riley, Melissa Alessandra. „The use of magnets in biomedical applications“. Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364498.
Der volle Inhalt der QuelleFu, Xin. „Active screen plasma surface modification of polymeric materials for biomedical application“. Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3514/.
Der volle Inhalt der QuelleAlmushref, Fares R. „Design and manufacture of engineered titanium-based materials for biomedical applications“. Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25517.
Der volle Inhalt der QuelleMerlettini, Andrea <1989>. „Micro-nanostructured polymeric materials with specific functionalities for advanced biomedical applications“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8834/1/Thesis_Merlettini.pdf.
Der volle Inhalt der QuelleRivers, Tyrell Jermaine. „Design, synthesis, and characterization of a novel biodegradable, electrically conducting biomaterial“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035967.
Der volle Inhalt der QuelleHo, Joan Pui Yee. „Plasma Surface Modification of Biomedical Polymers and Metals“. Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/2463.
Der volle Inhalt der QuelleHo, Joan Pui Yee. „Plasma Surface Modification of Biomedical Polymers and Metals“. University of Sydney, 2007. http://hdl.handle.net/2123/2463.
Der volle Inhalt der QuelleBiomedical materials are being extensively researched, and many different types such as metals, metal alloys, and polymers are being used. Currently used biomedical materials are not perfect in terms of corrosion resistance, biocompatibility, and surface properties. It is not easy to fabricate from scratch new materials that can fulfill all requirements and an alternative approach is to modify the surface properties of current materials to cater to the requirements. Plasma immersion ion implantation (PIII) is an effective and economical surface treatment technique and that can be used to enhance the surface properties of biomaterials. The unique advantage of plasma modification is that the surface properties and functionalities can be enhanced selectively while the favorable bulk attributes of the materials such as strength remain unchanged. In addition, the non-line of sight feature of PIII is appropriate for biomedical devices with complex geometries such as orthopedic implants. However, care must be exercised during the plasma treatment because low-temperature treatment is necessary for heat-sensitive materials such as polymers which typically have a low melting point and glass transition temperature. Two kinds of biomedical materials will be discussed in this thesis. One is nickel titanium (NiTi) alloy which is a promising orthopedic implant material due to its unique shape memory and superelastic properties. However, harmful ions may diffuse from the surface causing safety hazards. In this study, we investigate the properties and performance of NiTi after nitrogen and oxygen PIII in terms of the chemical composition, corrosion resistance, and biocompatibility. The XPS results show that barrier layers mainly containing TiN and TiOx are produced after nitrogen and oxygen PIII, respectively. Based on the simulated in vitro and electrochemical corrosion tests, greatly reduced ion leaching and improved corrosion resistance are accomplished by PIII. Porous NiTi is also studied because the porous structure possesses better bone ingrowth capability and compatible elastic modulus with human bones. These advantages promote better recovery in patients. However, higher risks of Ni leaching are expected due to the increased exposed surface area and rougher topography than dense and smooth finished NiTi. We successfully apply PIII to porous NiTi and in vitro tests confirm good cytocompatibility of the materials. The other type of biomedical materials studied here is ultra-high molecular weight polyethylene (UHMWPE) which is a potential material for use in immunoassay plates and biosensors. In these applications, active antibodies or enzymes attached to a surface to detect molecules of interests by means of specific interactions are required. Moreover, the retention of enzyme activity is crucial in these applications. Therefore, the aim of this study is to investigate the use of PIII to prepare UHMWPE surfaces for binding of active proteins in terms of the binding density and ‘shelf life’ of the treated surfaces. Argon and nitrogen PIII treatments are attempted to modify the surface of UHMWPE. Horseradish peroxidase (HRP) is selected to conduct the protein binding test since it is a convenient protein to assay. Experimental results show that both PIII treated surfaces significantly improve the density of active HRP bound to the surface after incubation in buffer containing HRP. Furthermore, the PIII treated surfaces are found to perform better than a commercially available protein binding surface and the shelf life of the PIII treated surfaces under ambient conditions is at least six months. In conclusion, a biocompatible barrier layer on NiTi and a protein binding surface on UHMWPE is synthesized by PIII. The surface properties such as corrosion resistance and functionality on these two different types of substrates are improved by PIII.
Williams, Stephen. „Mechanical testing of a new biomaterial for potential use as a vascular graft and articular cartilage substitute“. Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17272.
Der volle Inhalt der QuelleChin, Quee Shawn L. „Design verification for tissue engineered vascular grafts“. Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/19689.
Der volle Inhalt der QuelleRubin, Daniel James. „D,L-Cyclic Peptides as Structural Materials“. Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463962.
Der volle Inhalt der QuelleEngineering and Applied Sciences - Engineering Sciences
Li, Hui Shih Wei-Heng Shih Wan Y. „Synthesis and characterization of aqueous quantum dots for biomedical applications /“. Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2909.
Der volle Inhalt der QuelleSingh, Neetu. „Synthetic routes to new core/shell nanogels design and application in biomaterials /“. Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28261.
Der volle Inhalt der Quelle