Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Biomass“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Biomass" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Biomass"
Naviza, Fania, Gunardi Djoko Winarno, Wahyu Hidayat und Slamet Budi Yuwono. „PELUANG KEANEKARAGAMAN JENIS BIOMAS UNTUK ENERGI BIOMAS“. Gorontalo Journal of Forestry Research 6, Nr. 2 (13.10.2023): 63. http://dx.doi.org/10.32662/gjfr.v6i2.3055.
Der volle Inhalt der QuelleBolin, Olof. „Biomass or biomess?“ Energy Policy 25, Nr. 6 (Mai 1997): 583–85. http://dx.doi.org/10.1016/s0301-4215(97)00049-9.
Der volle Inhalt der QuelleTrentin, Carline Biasoli, Aline Biasoli Trentin und Dejanira Luderitz Saldanha. „RELAÇÃO ENTRE A BIOMASSA DA VEGETAÇÃO CAMPESTRE NATIVA E DADOS DE SENSORIAMENTO REMOTO ORBITAL“. GEOgraphia 21, Nr. 45 (07.06.2019): 98. http://dx.doi.org/10.22409/geographia2019.v21i45.a14187.
Der volle Inhalt der QuellePurwanto, Ris Hadi, und Melikaries Silaban. „Inventore Biomasa dan Karbon Jenis Jati (Tectona grandis L.f.) di Hutan Rakyat Desa Jatimulyo, Karanganyar“. Jurnal Ilmu Kehutanan 5, Nr. 1 (01.01.2011): 40. http://dx.doi.org/10.22146/jik.581.
Der volle Inhalt der QuellePrayitno, Joko, Iklima Ika Rahmasari und Agus Rifai. „Pengaruh Interval Waktu Panen terhadap Produksi Biomassa Chlorella sp. dan Melosira sp. untuk Penangkapan Karbon secara Biologi“. Jurnal Teknologi Lingkungan 21, Nr. 1 (30.01.2020): 23–30. http://dx.doi.org/10.29122/jtl.v21i1.3777.
Der volle Inhalt der QuelleSuryono, Suryono, Nirwani Soenardjo, Edi Wibowo, Raden Ario und Edi Fahrur Rozy. „Estimasi Kandungan Biomassa dan Karbon di Hutan Mangrove Perancak Kabupaten Jembrana, Provinsi Bali“. BULETIN OSEANOGRAFI MARINA 7, Nr. 1 (24.05.2018): 1. http://dx.doi.org/10.14710/buloma.v7i1.19036.
Der volle Inhalt der QuelleDjunaedi, Ali, Sunaryo Sunaryo, Chrisna Adi Suryono und Adi Santosa. „Kandungan Pigmen Fikobiliprotein dan Biomassa Mikroalga Chlorella vulgaris pada media dengan Salinitas Berbeda“. Jurnal Kelautan Tropis 20, Nr. 2 (22.11.2017): 112. http://dx.doi.org/10.14710/jkt.v20i2.1736.
Der volle Inhalt der QuelleDirgantara, Made, Karelius Karelius und Marselin Devi Ariyanti, Sry Ayu K. Tamba. „Evaluasi Prediksi Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Proksimat“. Risalah Fisika 4, Nr. 1 (14.07.2020): 1–7. http://dx.doi.org/10.35895/rf.v4i1.166.
Der volle Inhalt der QuelleNamoua, Dilivia J., Adnan S. Wantasen, Khristin I. F. Kondoy, Rene Ch Kepel, Febry S. I. Menajang und Wilmy Pelle. „Carbon Absorption in Seagrasses in Tongkaina Coastal Waters, Bunaken District, Manado City, North Sulawesi“. Jurnal Ilmiah PLATAX 10, Nr. 2 (30.09.2022): 433. http://dx.doi.org/10.35800/jip.v10i2.43485.
Der volle Inhalt der QuelleSilva, Jaciely Gabriela Melo da, José Alberto Quintanilha, Carlos Henrique Grohmann, Danilo Ribeiro da Costa, José Douglas Monteiro da Costa und José Mauro Santana da Silva. „Distribuição da Biomassa vegetal e sequestro de carbono na sub-bacia do Rio Pirajibu no município de Sorocaba/SP“. Revista Brasileira de Geografia Física 16, Nr. 3 (05.06.2023): 1647. http://dx.doi.org/10.26848/rbgf.v16.3.p1647-1656.
Der volle Inhalt der QuelleDissertationen zum Thema "Biomass"
Smarž, Patrik. „Využití odpadní biomasy pro výrobu elektrické energie“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221204.
Der volle Inhalt der QuelleGavilà, Terrades Llorenç. „Different biomass conversion strategies for valuable chemical production“. Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/457135.
Der volle Inhalt der QuelleComo alternativa a la producción química a partir fuentes petroquímicas, la conversión de biomasa en productos químicos valiosos es un campo actualmente en desarrollo. En este campo, una amplia gama de enfoques es usada. En esta tesis se presentan tres diferentes nuevas estrategias para la conversión de biomasa: i) producción de azúcares fermentables (glucosa) a partir de: celulosa, pulpa producida con líquido iónico conmutable y biomasa. Los azúcares obtenidos se someten entonces a ensayo para la fermentación microbiana; ii) desarrollar una nueva estrategia integrada para producir un producto químico de valor añadido (5-acetoximetilfurfural) a partir de lignocelulosa, utilizando acetato de celulosa como material de partida en lugar de celulosa y aprovechando la solubilidad aumentada de acetato de celulosa; iii) mejorar un producto químico de valor añadido tal como furfural en un producto final como el 1,5-pentanodienol por medio de una reacción en cascada usando por primera vez un catalizador metálico no noble. Por medio de la metodología descrita, se produce, respectivamente, ácido láctico (con uso extendido como precursor bioplástico), 5-acetoximetilfurfural (un componente estratégico con una amplia gama de potenciales conversiones a productos químicos valiosos) y 1,5-pentanodienol (un producto final con muchas aplicaciones como resina o precursor bioplástico).
As an alternative to chemical production from petrochemical sources, biomass conversion into valuable chemicals is a field in current development. In this field, a broad range of approaches is targeted. In this thesis, three new different strategies for the whole picture of biomass conversion are presented i) producing fermentable sugars (glucose) from: cellulose, pulp produced with switchable ionic liquid, and biomass. The obtained sugars are then tested for microbial fermentation; ii) developing a new integrated strategy to produce a valuable building block (5-acetoxymethylfurfural) from lignocellulose, using cellulose acetate as starting material rather than cellulose and taking benefit of cellulose acetate enhanced solubility; and iii) upgrading a building block such as furfural to an end product like 1,5-pentanedienol by means of cascade reaction using for the first time a non-noble metal catalyst. By means of the described methodology, is produced, respectively, lactic acid (with extended use as bioplastic precursor), 5-acetoxymethylfurfural (a strategic building block with a wide range of potential conversions to valuable chemicals), and 1,5-pentanedienol (an end product with a lot of applications as a resin or bioplastic precursor).
Ptáček, Pavel. „Teplotní pole v tuhém palivu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417431.
Der volle Inhalt der QuelleKřivák, Petr. „Návrh roštového kotle s přirozenou cirkulací na spalování slámy z pšenice,žita a ječmene“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231257.
Der volle Inhalt der QuelleNěmec, Radim. „Roštový kotel s přirozenou cirkulací na spalování slámy z pšenice,žita a ječmene,20t/h“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230887.
Der volle Inhalt der QuellePang, Cheng Heng. „The characterisation of biomass and biomass/coal blends“. Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.588061.
Der volle Inhalt der QuelleChing, Diego. „Upgrading of biomass: alternative ways for biomass treatment“. Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149373.
Der volle Inhalt der QuelleHuéscar, Medina Clara. „Explosion safety of biomass and torrefied biomass powders“. Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8460/.
Der volle Inhalt der QuelleOguri, Guilherme [UNESP]. „Correlação entre biomassa e nutrientes de galhos e folhas em um plantio adensado de Eucalyptus grandis x Eucalyptus urophylla“. Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/90512.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Universidade Estadual Paulista (UNESP)
Este estudo teve com objetivo avaliar a produção de biomassa e correlacionar com os nutrientes de galhos e folhas que poderão ser exportados através da colheita mecanizada, bem como o poder calorífico dos galhos em função de diferentes espaçamentos e adubações em um plantio de Eucalyptus urophylla x Eucalyptus grandis de curta rotação. O plantio da área em estudo ocorreu em dezembro de 2008, totalizando 5,8 ha. A área total foi dividida em cinco espaçamentos utilizando três diferentes doses de adubação. Nas idades de 18 meses, 24 meses e 30 meses após o plantio, foi realizado um inventário coletando informações de diâmetro a altura do peito (DAP) para escolha das árvores-amostra com o intuito de obter dados sobre a biomassa de galhos e folhas, assim como o poder calorífico dos galhos e nutrientes nas folhas e nos galhos. Amostras de galhos e folhas foram coletadas e pesadas no campo e levadas para estufa para posterior cálculo de biomassa seca por unidade de área. Os nutrientes em estudo foram os macronutrientes, nitrogênio, fósforo e potássio e; os micronutrientes, boro e zinco. Para o cálculo do poder calorífico superior (PCS) utilizou-se uma bomba calorimétrica seguindo a norma NBR 8633. Todos os resultados foram analisados pela análise de variância e, posteriormente, teste de Tukey. Concluiu-se que a biomassa de galhos e folhas aumentou de acordo com o nível de adubação e, também que aumentando a dose de fertilizantes, maior será a exportação de nutrientes nas folhas e nos galhos
The aim of this study was to evaluate the biomass production and correlate with branches and leaves nutrients content that will be exported by mechanical harvesting, as well as the calorific value of branches as a function of spacements with three levels of fertilization in an Eucalyptus grandis x Eucalyptus urophylla short rotation forest. The forest was planted in December 2008 in a total of 5,8 ha. At 18 months, 24 months and 30 months after planting we collected information about diameter to choose the sample-trees in order to obtain branches and leaves biomass data, as well as the branches and leaves nutrients content and calorific value of branches. Leaves and branches samples were collected and weighted on the field and taken at greenhouse to calculate dry biomass. The macronutrients - N, P and K – and the micronutrients – B and Z – were studied. The gross calorific value was calculated using a calorimeter according to NBR 8633. All results were analyzed by ANOVA and Tukey test. It was concluded that branches and leaves biomass increases at the same way the fertilizer level increases and also we noted that increasing the fertilizer amount, larger will be branches and leaves export nutrients.
Scalet, Verônica. „Caracterização e confecção de briquetes de casca de liquri (Syagrus coronata (Mart) Becc.) para produção de energia“. Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/8330.
Der volle Inhalt der QuelleApproved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2016-11-16T18:43:44Z (GMT) No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2016-11-16T18:43:50Z (GMT) No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5)
Made available in DSpace on 2016-11-16T18:43:57Z (GMT). No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5) Previous issue date: 2015-04-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The Licuri bark is a potential source of biomass for energy production. This study aims at making briquettes and the physicochemical characterization of Licuri bark aiming to expand its use as fuel. The material was collected in Great Cauldron - BA and briquettes were made with five different compositions: 100% Licuri bark (T1), 75% Licuri bark + 25% sugar cane straw (T2), 50% Licuri bark + 50% sugar cane straw (T3), 25% Licuri bark + 75% sugar cane straw (T4) and finally 100% sugar cane straw (T5). The briquettes were measured to obtain the value of its expansion and density, passed through drumming test and was made mechanical test on the tensile strength by diametrical compression. Also were made the following analyzes to Licuri bark: moisture content, density, particle size, ash and volatile content, fixed carbon, high heat value, extraction with hot water and cyclohexane / ethanol, lignin and thermogravimetry analysis. Statistical analyzes were made when appropriate (ANOVA and Tukey's test). The expansion of briquettes stabilized after 24 hours of its confection, about the expansion in height, there was no significant difference between treatments, as for the expansion in diameter treatments with the highest percentage of Licuri bark (T1 and T2) showed the lowest expansion. Finally, for the mechanical test the T1 and T2 differed from the other treatments with larger maximum force (34.09 and 34.64 kgf respectively). The moisture content observed was 11.15% ± 1.31, suitable for energy use. The gross calorific value (4652 Kcal.Kg-1 ± 18), the ash content (3.90% + 1.42) and lignin content (36.86 ± 2.6%) of the observed material are high when compared to other biomass. Therefore, the use of Licuri in order to produce energy can be very important for families living of their extraction, because it has favorable characteristics for such use. Moreover, the production of briquettes may optimize the transport process and the burning of the material.
A casca de Licuri é uma potencial fonte de biomassa para a produção de energia. O presente trabalho tem como objetivo a confecção de briquetes e a caracterização físicoquímica da casca de Licuri visando à ampliação de seu uso como combustível. O material foi coletado em Caldeirão Grande – BA e foram confeccionados briquetes com cinco formulações distintas: 100% casca de Licuri (T1), 75% casca de Licuri + 25% palha de cana-de-açúcar (T2), 50% casca de Licuri + 50% palha de cana-de-açúcar (T3), 25% casca de Licuri + 75% palha de cana-de-açúcar (T4) e por fim 100% palha de cana-de-açúcar (T5). Os briquetes foram medidos para obtenção do valor da sua expansão e densidade, passaram pelo teste de tamboramento e realizou-se ensaio mecânico quanto à resistência a tração por compressão diametral. Além disso foram realizadas as seguintes análises para a casca de Licuri: teor de umidade, densidade, granulometria, teor de cinzas e teor de voláteis, carbono fixo, poder calorífico superior, extrações por água quente e por ciclohexano/etanol, teor de lignina e análise termogravimétria. Foram realizadas análises estatísticas quando pertinente (ANOVA e Teste de Tukey). A expansão dos briquetes estabilizou após 24h de sua confecção, quanto a expansão em altura, não houve diferença significativa entre os tratamentos, já para a expansão em diâmetro os tratamentos com maior porcentagem de casca de Licuri (T1 e T2) apresentaram a menor expansão. Para o ensaio mecânico os tratamentos T1 e T2 diferenciaram-se dos demais tratamentos apresentando maior força máxima (34,09 e 34,64 Kgf respectivamente). O poder calorífico superior (4652 Kcal.Kg-1 ± 18), o teor de cinzas (3,90% + 1,42) e o teor de lignina (36,86% ± 2,6) do material são elevados quando comparados a outras biomassas. Com os resultados, a casca de Licuri mostrou-se potencialmente interessante para a produção de energia. Assim, o uso do Licuri com a finalidade de se produzir energia pode ser de grande importância para as famílias que vivem de sua extração, pois o mesmo possui características favoraveis para tal uso. Além disso, a confecção de briquetes pode otimizar o processo de transporte e queima do material.
Bücher zum Thema "Biomass"
Coombs, J. Biomass. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0.
Der volle Inhalt der QuelleA, Wood Willis, und Kellogg Scott T, Hrsg. Biomass. San Diego: Academic Press, 1988.
Den vollen Inhalt der Quelle finden1921-, Wood Willis A., und Kellogg Scott T, Hrsg. Biomass. San Diego: Academic Press, 1988.
Den vollen Inhalt der Quelle findenHall, D. O. Biomass. Washington, DC (1818 H St., NW, Washington 20433): Office of the Vice President, Development Economics, World Bank, 1992.
Den vollen Inhalt der Quelle findenA, Wood Willis, und Kellogg Scott T, Hrsg. Biomass. San Diego: Academic Press, 1988.
Den vollen Inhalt der Quelle findenAtazadeh, Islam. Biomass and remote sensing of biomass. Rijeka: InTech, 2011.
Den vollen Inhalt der Quelle findenKrižan, Peter. Biomass Compaction. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89956-1.
Der volle Inhalt der QuelleHimmel, Michael E., Hrsg. Biomass Conversion. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-956-3.
Der volle Inhalt der QuelleBaskar, Chinnappan, Shikha Baskar und Ranjit S. Dhillon, Hrsg. Biomass Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2.
Der volle Inhalt der QuelleFerrero, G. L., G. Grassi und H. E. Williams, Hrsg. Biomass Energy. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-011-7879-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Biomass"
Ernst, Michaela, Achim Walter und Ulrich Schurr. „Biomass biomass Production biomass production“. In Encyclopedia of Sustainability Science and Technology, 1476–87. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_242.
Der volle Inhalt der QuelleHornung, Andreas. „Biomass biomass Pyrolysis biomass pyrolysis“. In Encyclopedia of Sustainability Science and Technology, 1517–31. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_258.
Der volle Inhalt der QuelleErnst, Michaela, Achim Walter und Ulrich Schurr. „Biomass biomass Production biomass production“. In Renewable Energy Systems, 510–21. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_242.
Der volle Inhalt der QuelleHornung, Andreas. „Biomass biomass Pyrolysis biomass pyrolysis“. In Renewable Energy Systems, 553–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_258.
Der volle Inhalt der QuelleFaaij, André. „Biomass biomass Resources biomass resources , Worldwide“. In Encyclopedia of Sustainability Science and Technology, 1531–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_259.
Der volle Inhalt der QuelleFaaij, André. „Biomass biomass Resources biomass resources , Worldwide“. In Renewable Energy Systems, 567–619. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_259.
Der volle Inhalt der QuelleCoombs, J. „Argentina“. In Biomass, 3. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_1.
Der volle Inhalt der QuelleCoombs, J. „Costa Rica“. In Biomass, 24. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_10.
Der volle Inhalt der QuelleCoombs, J. „Cuba“. In Biomass, 24. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_11.
Der volle Inhalt der QuelleCoombs, J. „Cyprus“. In Biomass, 25. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Biomass"
Fábio Cordeiro de Lisboa, Mara Rúbia da Silva Miranda und Alexandre Caires Rodrigues. „BRASILIAN BIOMASS GASIFICATION: A NUMERICAL SIMULATION OF BIOMASS GASIFICATION FROM DIFFERENT BIOMES“. In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-1886.
Der volle Inhalt der QuelleHuesemann, Michael, Scott Edmunson, Song Gao, Taraka Dale, Sangeeta Negi, Lieve Laurens, Philip Pienkos et al. „DISCOVR: Development of Integrated Screening, Cultivar Optimization, and Verification Research“. In Algae Biomass Summit. US DOE, 2020. http://dx.doi.org/10.2172/1676405.
Der volle Inhalt der QuelleWyble, Ethan, und Philip Aucoin. „Biomass Torrefaction: Improving the Fuel Properties of Biomass“. In 2012 IEEE Green Technologies Conference. IEEE, 2012. http://dx.doi.org/10.1109/green.2012.6200987.
Der volle Inhalt der QuelleKolodynskij, Vitalij, und Pranas Baltrėnas. „Experimental Research of Biogas Yield and Quality Produced from Chicken Manure“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.030.
Der volle Inhalt der QuelleBanda, Francesco, Davide Giudici, Shaun Quegan und Klaus Scipal. „The Retrieval Concept of the Biomass Forest Biomass Prototype Processor“. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518434.
Der volle Inhalt der Quelle„CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 3 Biomass Engineering, Part 3.5 Biomass Feedstocks, Part 3.5.3 Chemical Ingredients from Biomass“. In CIGR Handbook of Agricultural Engineering Volume V Energy & Biomass Engineering. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 1999. http://dx.doi.org/10.13031/2013.36425.
Der volle Inhalt der QuelleOlatunji, Obafemi O., Nkosinathi Madushele, Paul A. Adedeji und Stephen Akinlabi. „Digitalisation of Biomass Exploration: A Case Study of Biomass Feedstock Classification“. In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16772.
Der volle Inhalt der QuelleHala Chaoui, Steven Eckhoff und K C Ting. „Designing a biomass storage system: Part of a biomass production system“. In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.40609.
Der volle Inhalt der Quelle„Residue distribution and biomass recovery following biomass harvest of plantation pine“. In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162458172.
Der volle Inhalt der QuelleTimsina, Ramesh, Rajan K. Thapa und Marianne S. Eikeland. „Aspen Plus simulation of biomass gasification for different types of biomass“. In The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden. Linköping University Electronic Press, 2020. http://dx.doi.org/10.3384/ecp20170151.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Biomass"
Skone, Timothy J. Biomass Drying for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1509242.
Der volle Inhalt der QuelleSkone, Timothy J. Biomass Grinding for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), Juli 2011. http://dx.doi.org/10.2172/1509243.
Der volle Inhalt der QuelleSkone, Timothy J. Biomass Torrefaction for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), Juli 2011. http://dx.doi.org/10.2172/1509244.
Der volle Inhalt der QuelleCrow, Stuart J. Biomass Economy. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada163647.
Der volle Inhalt der QuelleWentworth, Jonathan, und Alice Booth. Biomass for UK energy. Parliamentary Office of Science and Technology, Januar 2023. http://dx.doi.org/10.58248/pn690.
Der volle Inhalt der QuelleAuthor, Not Given. Direct-fired biomass. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/1216658.
Der volle Inhalt der QuelleAuthor, Not Given. Gasification-based biomass. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/1216660.
Der volle Inhalt der QuelleKobayashi, Atsushi, und M. Steinberg. Hydropyrolysis of biomass. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5787496.
Der volle Inhalt der QuelleKobayashi, Atsushi, und M. Steinberg. Hydropyrolysis of biomass. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/10132392.
Der volle Inhalt der QuelleBain, R. L. Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/15016381.
Der volle Inhalt der Quelle