Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bioenergetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bioenergetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bioenergetics"
Bowden, Pye. „Including the body in psychotherapy“. Ata: Journal of Psychotherapy Aotearoa New Zealand 7, Nr. 1 (30.07.2001): 65–71. http://dx.doi.org/10.9791/ajpanz.2001.06.
Der volle Inhalt der QuellePatón, Mauricio, und Jorge Rodríguez. „Integration of bioenergetics in the ADM1 and its impact on model predictions“. Water Science and Technology 80, Nr. 2 (15.07.2019): 339–46. http://dx.doi.org/10.2166/wst.2019.279.
Der volle Inhalt der QuelleSandage, Mary J., und Audrey G. Smith. „Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology“. Journal of Speech, Language, and Hearing Research 60, Nr. 5 (24.05.2017): 1254–63. http://dx.doi.org/10.1044/2016_jslhr-s-16-0192.
Der volle Inhalt der QuelleCoven, Arnold B. „The Bioenergetic Approach to Rehabilitation Counseling“. Journal of Applied Rehabilitation Counseling 16, Nr. 2 (01.06.1985): 6–10. http://dx.doi.org/10.1891/0047-2220.16.2.6.
Der volle Inhalt der QuelleHill, Bradford G., Gloria A. Benavides, Jack R. Lancaster, Scott Ballinger, Lou Dell’Italia, Jianhua Zhang und Victor M. Darley-Usmar. „Integration of cellular bioenergetics with mitochondrial quality control and autophagy“. Biological Chemistry 393, Nr. 12 (01.12.2012): 1485–512. http://dx.doi.org/10.1515/hsz-2012-0198.
Der volle Inhalt der QuelleStrope, Taylor A., Cole J. Birky und Heather M. Wilkins. „The Role of Bioenergetics in Neurodegeneration“. International Journal of Molecular Sciences 23, Nr. 16 (16.08.2022): 9212. http://dx.doi.org/10.3390/ijms23169212.
Der volle Inhalt der QuelleChacko, Balu K., Philip A. Kramer, Saranya Ravi, Gloria A. Benavides, Tanecia Mitchell, Brian P. Dranka, David Ferrick et al. „The Bioenergetic Health Index: a new concept in mitochondrial translational research“. Clinical Science 127, Nr. 6 (29.05.2014): 367–73. http://dx.doi.org/10.1042/cs20140101.
Der volle Inhalt der QuelleSchroeter, Vincentia. „Integrating Regulation Therapy and Bioenergetic Analysis“. Clinical Journal of the International Institute for Bioenergetic Analysis 24, Nr. 1 (März 2014): 105–32. http://dx.doi.org/10.30820/0743-4804-2014-24-105.
Der volle Inhalt der QuelleLehrer, H. Matthew, Lauren Chu, Martica Hall und Kyle Murdock. „009 Self-Reported Sleep Efficiency and Duration are Associated with Systemic Bioenergetic Function in Community-Dwelling Adults“. Sleep 44, Supplement_2 (01.05.2021): A4. http://dx.doi.org/10.1093/sleep/zsab072.008.
Der volle Inhalt der QuelleAcin-Perez, Rebeca, Cristiane Benincá, Byourak Shabane, Orian S. Shirihai und Linsey Stiles. „Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives“. Life 11, Nr. 9 (10.09.2021): 949. http://dx.doi.org/10.3390/life11090949.
Der volle Inhalt der QuelleDissertationen zum Thema "Bioenergetics"
Spickett, Corinne Michelle. „NMR studies of cellular bioenergetics“. Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257961.
Der volle Inhalt der QuelleTrudel, Marc. „Bioenergetics and mercury dynamics in fish“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0035/NQ64684.pdf.
Der volle Inhalt der QuelleTrudel, Marc. „Bioenergetics and mercury dynamics in fish“. Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36723.
Der volle Inhalt der QuelleHinsley, Shelley Ann. „Bioenergetics of desert birds (Sandgrouse : Peteroclididae)“. Thesis, Cardiff University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316237.
Der volle Inhalt der QuelleSmolkova, Katarina. „Non-canonical bioenergetics of the cell“. Thesis, Bordeaux 2, 2009. http://www.theses.fr/2009BOR21700/document.
Der volle Inhalt der QuelleRésumé non disponible
Roach, Ty Noble Frederick. „Nonequilibrium Thermodynamics, Microbial Bioenergetics, and Community Ecology“. Thesis, University of California, San Diego, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10827422.
Der volle Inhalt der QuelleWhile it is clear that thermodynamics plays a nontrivial role in biological processes, exactly how this affects the macroscopic structuring of living systems is not fully understood. Thus, the objective of this dissertation was to investigate how thermodynamic variables such as exergy, entropy, and information are involved in biological processes such as cellular metabolism, ecological succession, and evolution. To this end, I have used a combination of mathematical modelling, in silico simulation, and both laboratory- and field-based experimentation.
To begin the dissertation, I review the basic tenets of biological thermodynamics and synthesize them with modern fluctuation theory, information theory, and finite time thermodynamics. In this review, I develop hypotheses concerning how entropy production rate changes across various time scales and exergy inputs. To begin testing these hypotheses I utilized a stochastic, agent-based, mathematical model of ecological evolution, The Tangled Nature Model. This model allows one to observe the dynamics of entropy production over time scales that would not be possible in real biological systems (i.e., 106 generations). The results of the model’s simulations demonstrate that the ecological communities generated by the model’s dynamics have increasing entropies, and that this leads to emergent order, organization, and complexity over time. To continue to examine the role of thermodynamics in biological processes I investigated the bioenergetics of marine microbes associated with benthic substrates on coral reefs. By utilizing both mesocosm and in situ experiments I have shown that these microbes change their power output, oxygen uptake, and community structure depending upon their available exergy.
Overall, the data presented herein demonstrates that ecological structuring and evolutionary change are, at least in part, determined by underlying thermodynamic mechanisms. Recognizing how physical processes affect biological dynamics allows for a more holistic understanding of biology at all scales from biochemistry, to ecological succession, and even long-term evolutionary change.
Ferng, Alice Shirong. „Cardiac Organogenesis: 3D Bioscaffolds, Bioenergetics and Regeneration“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/596090.
Der volle Inhalt der QuelleLi, Zhaoqi Ph D. Massachusetts Institute of Technology. „Bioenergetics and metabolism of eukaryotic cell proliferation“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130658.
Der volle Inhalt der QuelleCataloged from the official PDF of thesis. "February 2021." Vita. Page 179 blank.
Includes bibliographical references.
Cellular growth and proliferation necessitates the transformation of cell-external nutrients into biomass. Strategies of biomass accumulation across the kingdoms of life are diverse and range from carbon fixation by autotrophic organisms to direct biomass incorporation of consumed nutrients by heterotrophic organisms. The goal of this dissertation is to better understand the divergent and convergent modes of metabolism that support biomass accumulation and proliferation in eukaryotic cells. We first determined that the underlying mechanism behind why rapidly proliferating cells preferentially ferment the terminal glycolytic product pyruvate is due to an intrinsic deficiency of respiration to regenerate electron acceptors. We tested this model across an assorted array of proliferating cells and organisms ranging from human cancer cells to the baker's yeast Saccharomyces cerevesiae. We next determined that a major metabolic pathway of avid electron acceptor consumption in the context of biomass accumulation is the synthesis of lipids. Insights from this work has led to the realization that net-reductive pathways such as lipid synthesis may be rate-limited by oxidative reactions. Lastly, we established the green algae Chlorella vulgaris as a model system to study the comparative metabolism of photoautotrophic and heterotrophic growth. We determined that heterotrophic growth of plant cells is associated with aerobic glycolysis in a mechanism that may be suppressed by light. Collectively, these studies contribute to a more holistic understanding of the bioenergetics and metabolic pathways employed by eukaryotic cells to accumulate biomass and lay the foundation for future studies to understand proliferative metabolism.
by Zhaoqi Li.
Ph. D. in Biochemistry
Ph.D.inBiochemistry Massachusetts Institute of Technology, Department of Biology
Hislop, Michael Stuart. „The effect of anabolic-androgenic hormones on postprandial triglyceridaemia and lipoprotein profiles in man“. Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/26978.
Der volle Inhalt der QuelleKrohn, Martha M. „Growth and bioenergetics of northern cod (Gadus morhua)“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ49272.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Bioenergetics"
Gräber, Peter, Giulio Milazzo und Dieter Walz, Hrsg. Bioenergetics. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8994-0.
Der volle Inhalt der QuelleKim, Chong H., und Takayuki Ozawa, Hrsg. Bioenergetics. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5835-0.
Der volle Inhalt der QuelleSchäfer, Günter, und Harvey S. Penefsky, Hrsg. Bioenergetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78622-1.
Der volle Inhalt der QuelleClark, Kevin B. Bioenergetics. Rijeka, Croatia: InTech, 2012.
Den vollen Inhalt der Quelle findenBerkin, Jeffrey W. Bioenergetics. Hauppauge, N.Y: Nova Science Publishers, 2010.
Den vollen Inhalt der Quelle findenLowen, Alexander. Bioenergetics. New York: Penguin/Arkana, 1994.
Den vollen Inhalt der Quelle finden1943-, Gräber Peter, und Milazzo Giulio, Hrsg. Bioenergetics. Basel: Birkhäuser, 1997.
Den vollen Inhalt der Quelle findenWheeler, Ralph A., Hrsg. Molecular Bioenergetics. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0883.
Der volle Inhalt der QuellePalmeira, Carlos M., und António J. Moreno, Hrsg. Mitochondrial Bioenergetics. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-382-0.
Der volle Inhalt der QuelleSkulachev, Vladimir P. Membrane Bioenergetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72978-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Bioenergetics"
Parke, William C. „Bioenergetics“. In Biophysics, 325–420. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44146-3_9.
Der volle Inhalt der QuelleEsteban, Genoveva F., und Tom M. Fenchel. „Bioenergetics“. In Ecology of Protozoa, 55–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59979-9_5.
Der volle Inhalt der QuelleNederkoorn, Paul H. J., Henk Timmerman und Gabriëlle M. Donné-Op den Kelder. „Bioenergetics“. In Signal Transduction by G Protein-Coupled Receptors, 3–16. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4684-1407-3_1.
Der volle Inhalt der QuelleWootton, Robert J. „Bioenergetics“. In Ecology of Teleost Fishes, 73–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0829-1_4.
Der volle Inhalt der QuelleAmils, Ricardo. „Bioenergetics“. In Encyclopedia of Astrobiology, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_746-2.
Der volle Inhalt der QuelleAmils, Ricardo. „Bioenergetics“. In Encyclopedia of Astrobiology, 270–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_746.
Der volle Inhalt der QuellePetty, Howard R. „Bioenergetics“. In Molecular Biology of Membranes, 123–88. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1146-9_5.
Der volle Inhalt der QuelleStenesh, J. „Bioenergetics“. In Biochemistry, 221–35. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9427-4_9.
Der volle Inhalt der QuelleMehlhorn, Heinz. „Bioenergetics“. In Encyclopedia of Parasitology, 327. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_404.
Der volle Inhalt der QuelleMehlhorn, Heinz. „Bioenergetics“. In Encyclopedia of Parasitology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-27769-6_404-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bioenergetics"
Xu, Weiling, Suzy A. Comhair, Allison J. Janocha, Lori A. Mavrakis und Serpil C. Erzurum. „Cellular Bioenergetics In Asthma“. In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2807.
Der volle Inhalt der QuelleSimion, Gabriela. „BIOENERGETICS METHOD FOR BIOSYSTEMS TESTING“. In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.019.
Der volle Inhalt der QuelleFiliou, M. „Stress and bioenergetics: what about mitochondria?“ In Abstracts of the 30th Symposium of the AGNP. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1606411.
Der volle Inhalt der QuelleRezende, Maria Clara Lopes, Maria Luiza Franco de Oliveira, Júlia Campos Fabri, Maria Júlia Filgueiras Granato, Mariana Vanon Moreira und Leandro Vespoli Campos. „Neuroprotective Effects of Creatine Supplementation in Neurodegenerative Diseases“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.234.
Der volle Inhalt der QuelleEscalona, Emilia, Marcelo Muñoz, Roxana Pincheira, Alvaro A. Elorza und Ariel F. Castro. „Abstract B083: NUAK1 regulates breast cancer cell bioenergetics“. In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b083.
Der volle Inhalt der QuelleHauser, Gary E., John Stark, George Robbins und Bethel Herrold. „Thermal and Bioenergetics Modeling for Balancing Energy and Environment“. In Waterpower Conference 1999. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/40440(1999)49.
Der volle Inhalt der QuelleBiniecka, Monika, Emese Balogh, Aisling Kennedy, Chin T. Ng, Douglas J. Veale und Ursula Fearon. „04.20 Oxidative stress alters cellular bioenergetics in inflammatory arthritis“. In 37th European Workshop for Rheumatology Research 2–4 March 2017 Athens, Greece. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2016-211051.20.
Der volle Inhalt der QuelleMorgan Davis Hayes, Hongwei Xin, Hong Li, Timothy Shepherd, Yang Zhao und John Paul Stinn. „Bioenergetics of Hy-Line Brown Hens in Aviary Houses“. In 2012 IX International Livestock Environment Symposium (ILES IX). St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41576.
Der volle Inhalt der QuelleZhou, Y., T. Guo, S. Z. Yang, Y. Zhu, C. S. Jiang und H. Peng. „Mitochondrial Fission and Bioenergetics Mediate Human Lung Fibroblast Durotaxis“. In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5224.
Der volle Inhalt der QuelleHeikal, Ahmed. „BIOENERGETICS AND DIFFUSION IN THE CROWDED MILIEU OF LIVING CELLS“. In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.th15.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bioenergetics"
Lanyi, Janos K., und Sergei Balashov. Bioenergetics of halophiles. Office of Scientific and Technical Information (OSTI), Februar 2016. http://dx.doi.org/10.2172/1239563.
Der volle Inhalt der QuellePacker, L. The bioenergetics of salt tolerance. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/5141950.
Der volle Inhalt der QuelleTrappe, Scott A. Scientific/Technical Report Bioenergetics Research Initiative Award number-DE-FG02-05ER64092. Office of Scientific and Technical Information (OSTI), Dezember 2009. http://dx.doi.org/10.2172/968497.
Der volle Inhalt der QuelleSpotila, J. R. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6658267.
Der volle Inhalt der QuelleRondorf, Dennis W. Bioenergetics of Juvenile Salmon During the Spring Outmigration, 1983 Annual Report. Office of Scientific and Technical Information (OSTI), Juli 1985. http://dx.doi.org/10.2172/5421371.
Der volle Inhalt der QuelleLudden, Paul W. The Biochemistry, Bioenergetics, and Physiology of CO-Dependent Growth of Rhodospirillum rubrum. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/850014.
Der volle Inhalt der QuelleLudden, P. W., und G. P. Roberts. [The biochemistry, bioenergetics, and physiology of the CO-dependent growth of Rhodospirillum rubrum]. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/7096789.
Der volle Inhalt der QuelleEggleton, Michael A., Steve Miranda und James P. Kirk. Potential for Predation by Fishes to Impact Zebra Mussels Dreissena polymorpha: Insight from Bioenergetics Models. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2003. http://dx.doi.org/10.21236/ada422134.
Der volle Inhalt der QuelleWells, Vanessa. CE-QUAL-W2 Water Quality and Fish-bioenergetics Model of Chester Morse Lake and the Cedar River. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.324.
Der volle Inhalt der QuelleSpotila, J. R. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Final report, 1 September 1988--30 June 1990. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10140266.
Der volle Inhalt der Quelle