Dissertationen zum Thema „Bimetalic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Bimetalic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sengupta, Debasish. „Preparation, characterization of bimetalic nanoparticles soaked on poly -ionic resins and their ctalalytic applications“. Thesis, University of North Bengal, 2014. http://ir.nbu.ac.in/handle/123456789/1827.
Der volle Inhalt der QuelleRowe, S. J. „Adsorption studies of simple molecules on metalic, bimetalic and semiconductor interfaces“. Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383911.
Der volle Inhalt der QuelleGallo, Irã Borges Coutinho. „Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction /“. Araraquara, 2018. http://hdl.handle.net/11449/153370.
Der volle Inhalt der QuelleBanca: Rodrigo Fernando Costa Marques
Banca: Leandro Martins
Banca: Elisabete Inacio Santiago
Banca: Joelma Perez
Abstract: Carbon supported PdAu nanoparticles with different Au contents (20-50% in atoms) were synthesized using a procedure carried out in a liquid two-phase system. As-prepared materials presented similar average particle diameter (~3nm) with narrow distribution over the carbon support, as shown by Transmission Electronic Microscopy (TEM). The combined data from X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) suggest that nanoparticles had Pd-enriched surfaces and Au-rich interiors. Cyclic Voltammetry (CVs) studies in H2SO4 further reinforced these findings, confirming that the nanoparticle surfaces were enriched with Pd. Moreover, XPS results show that increasing the Au content of PdAu alloys leads to varying amounts of surface-like and bulk-like Pd oxide, with a significant increase of metallic Pd. This result is consistent with data of X-ray Absorption Spectroscopy (XAS) around Pd L3 edge, which revealed that Au promotes an increase in the electronic occupancy of the Pd 4d band. Therefore, this whole set of characterizations suggests that the presence of Au in PdAu nanoalloys decreases the Pd affinity for oxygen, giving Pd a more noble-like character. In addition, the influence of ligand and ensemble effects on electrochemical surface processes, such as oxide formation/reduction, CO oxidation and hydrogen adsorption were also investigated. This was also a necessary step in order to determine the best technique to measure the Electrochemical Active Area (EAA) of... (Complete abstract click electronic access below)
Resumo: Nanopartículas de PdAu suportadas em carbono com diferentes frações de Au (20-50% em átomos) foram sintetizadas em um sistema líquido de duas fases. As nanopartículas preparadas apresentaram diâmetro médio próximo a 3 nm, com uma distribuição homogênea sobre o suporte de carbono, o que foi demonstrado por microscopia eletrônica de transmissão (TEM). O conjunto dos dados coletados por difração de raios X (XRD) e por espetroscopia de fotoelétrons excitados por raios X (XPS) demonstrou que o interior das nanopartículas é enriquecido por Au, enquanto a superfície é mais rica em Pd. A análise por XPS também demonstrou que o aumento da fração de Au nas ligas de PdAu leva a uma variação na fração de diferentes espécies de óxidos de Pd e um aumento na quantidade total de Pd metálico. Este resultado é consistente com aquele obtido por espectroscopia de absorção de raios-X (XAS), realizada na borda L3 do Pd, a qual revelou que o Au promove um preenchimento eletrônico na banda 4d do Pd. Ou seja, a presença do Au parece diminuir a afinidade do Pd pelo oxigênio. Ademais, foram estudados a influência de efeitos eletrônicos e do arranjo superficial de átomos sobre os processos eletroquímicos de formação/redução de óxidos, oxidação de CO adsorvido e adsorção de hidrogênio. Estes estudos também permitiram a determinação da área eletroquímica ativa de Pd. Por meio de todas estas caracterizações foi possível traçar correlações entre a composição no cerne das nanopartículas de PdAu e suas propri... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Pereira, Luis Gustavo da Silva. „Avaliação do mecanismo de oxidação de hidrogênio contaminado por monóxido de carbono em células PEMFC contendo catalisadores anódicos baseados em Pt-M/C (M=Ru, Mo, Fe e W)“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-11032010-110241/.
Der volle Inhalt der QuelleThe search for alternative sources of energy is a global trend, and in this context, the fuel cell supplied with hydrogen obtained by biofuels reforming is one of the most promising alternative. However, the performance of proton exchange membrane fuel cells (PEMFC) with Pt-based anode is drastically lowered when using CO-contain hydrogen, as that produced by reform. In this work, the electrocatalysis of CO tolerance and the stability of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C electrocatalysts at a PEM fuel cell anode has been investigated using single cell polarization and on line electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO2 starts at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particularly for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H2/CO, the formation of CO2 is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. A decay of the fuel cell performance was observed as a function of the operation time. The causes of degradation during long-term operation were found to be a complex process that involves several parallel mechanisms, including: electrocatalyst loss or redistribution, carbon corrosion, and electrolyte (Nafion®) degradation.
Galhardo, Thalita Soares. „Oxidação de glicerol utilizando catalisadores mono e bimetálicos à base de nanopartículas de Pt, Cu ou Ni suportadas em carvão ativado“. reponame:Repositório Institucional da UFABC, 2017.
Den vollen Inhalt der Quelle findenAtmatzakis, Evangelos. „Bimetallic photonic metamaterials“. Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/399982/.
Der volle Inhalt der QuelleMorris, James Alan. „Palladium-ruthenium bimetallic cascades“. Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405707.
Der volle Inhalt der QuelleMigliaccio, Luca. „Bimetallic catalysts for CO2 electroreduction“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14470/.
Der volle Inhalt der QuelleMerrifeild, Ruth Corrin. „Bimetallic Nanoclusters and Protein Interactions“. Thesis, University of Birmingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522011.
Der volle Inhalt der QuelleCooper, Ian Ronald. „Palladium-indium bimetallic cascade processes“. Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401087.
Der volle Inhalt der QuelleDavies, S. J. R. „The structure of bimetallic catalysts“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373245.
Der volle Inhalt der QuelleEnce, Chloe Christine. „Organic Synthesis using Bimetallic Catalysis“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8397.
Der volle Inhalt der QuelleKühn, Laura. „Bimetallic aerogels for electrocatalytic applications“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226469.
Der volle Inhalt der QuelleZhu, Chengzhou, Dan Wen, Martin Oschatz, Matthias Holzschuh, Wei Liu, Anne-Kristin Herrmann, Frank Simon, Stefan Kaskel und Alexander Eychmüller. „Kinetically controlled synthesis of PdNi bimetallic porous nanostructures with enhanced electrocatalytic activity“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-208520.
Der volle Inhalt der QuelleBerg, Katja E. „Bimetallic model compounds for artificial photosynthesis /“. Stockholm, 1997. http://www.lib.kth.se/abs98/berg0109.pdf.
Der volle Inhalt der QuelleSimpkins, Simon M. E. „Bimetallic organoiron dipoles as NLO materials“. Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365015.
Der volle Inhalt der QuelleMacLeod, Norman. „Alloy formation in bimetallic reforming catalysts“. Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388553.
Der volle Inhalt der QuelleMcCaffrey, Shaun. „Enantioselective Pd/In bimetallic cascade processes“. Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432336.
Der volle Inhalt der QuelleCampbell, Steven Bruce. „Characterisation of bimetallic diesel oxidation catalysts“. Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211242.
Der volle Inhalt der QuelleSchütze, Mike. „Bimetallic Complexes for Cooperative Polymerization Catalysis“. Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E4A0-A.
Der volle Inhalt der QuelleJudd, Lawrence. „Bimetallic complexes of meta-substituted phosphinobenzenes“. Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/110018/.
Der volle Inhalt der QuelleEliáš, Lumír. „Zavedení a optimalizace linky pro výrobu bimetalických komor do vstřikovacích lisů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-227962.
Der volle Inhalt der QuelleHuang, Wei. „Selective hydrogenation on zeolite-supported bimetallic catalysts“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.90 Mb., p. 76, 2005. http://proquest.umi.com/pqdlink?did=1037889271&Fmt=7&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleZhou, Shenghu. „Architecturally controlled bimetallic nanoparticles for heterogeneous catalysis“. College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6722.
Der volle Inhalt der QuelleThesis research directed by: Chemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Beck, Victoria Holly. „Synthesis and characterisation of bimetallic organometallic complexes“. Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403935.
Der volle Inhalt der QuelleMaggini, Simona. „Novel phosphinooxazolines as precursor of bimetallic systems“. Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433366.
Der volle Inhalt der QuelleNanada, Swagata. „Bimetallic alkoxides as potential lewis acid catalysts“. Thesis, University of Newcastle Upon Tyne, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533694.
Der volle Inhalt der QuelleChiffey, Andrew Francis. „Bimetallic compounds of palladium, platinum and gold“. Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294602.
Der volle Inhalt der QuelleCambanis, George. „Platinum bimetallic catalysts for fuel cell applications“. Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37958.
Der volle Inhalt der QuelleHardeman, David. „Growth of carbon nanotubes using bimetallic catalysts“. Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709528.
Der volle Inhalt der QuelleWells, Jordann Ashley Logan Slovenne Denis. „Bimetallic actinide complexes for small molecule activation“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31167.
Der volle Inhalt der QuelleLuo, Kai. „Spectroscopic characterization of monometallic and bimetallic model catalysts“. [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1709.
Der volle Inhalt der QuelleRoudgar, Ataollah. „Local reactivity of bimetallic overlayer and cluster systems“. [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971640084.
Der volle Inhalt der QuelleScherlin, Freddy. „Synthesis and characterization of bimetallic platinum-thallium compounds“. Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15403.
Der volle Inhalt der QuelleThe solid bimetallic compounds TtPt(CN)4(ClO4) and TtPt(CN)4(NO3) have been prepared by reactions between tetracyanoplatinate complex [Pt(CN)4]2- and aqueous solutions of Tl(ClO4)3 and Tl(NO3)3, respectively. The elemental analysis (N, C, H, Tl) of the compound has been carried out. The results of the analysis are reasonably consistent with the above compositions of the compounds. The bimetallic compounds have been characterized by IR and Raman spectroscopy as well as X-ray diffraction. IR and Raman spectra of the Tl-Pt compounds confirm presence of the perchlorate and nitrate counter ions in the solid. The presence of a direct Tl-Pt metal-metal bond in the compounds is confirmed by appearance of a strong vibrational band the low frequency region of the vibrational spectra.
Gjervan, Torbjørn. „Studies of bimetallic particle formation in reforming catalysts“. Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1482.
Der volle Inhalt der QuelleRademacher, Carolin [Verfasser]. „Synthesis and analysis of bimetallic nanoparticles / Carolin Rademacher“. Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1052627609/34.
Der volle Inhalt der QuelleCollins, Richard. „Bimetallic group 4 complexes as olefin polymerisation catalysts“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:f6cad6bf-c925-4cda-9797-7b1916f98a0f.
Der volle Inhalt der QuellePersson, Katarina. „Bimetallic palladium catalysts for catalytic combustion of methane“. Licentiate thesis, Stockholm, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-332.
Der volle Inhalt der QuelleSnyder, Brian. „An investigation into bimetallic hollow nanoparticles in catalysis“. Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47614.
Der volle Inhalt der QuelleO'Brien, S. D. „The preparation and properties of bimetallic hydrogenation catalysts“. Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421011.
Der volle Inhalt der QuelleNuttall, Christopher John. „Bimetallic tris-oxalate magnets : synthesis structure and properties“. Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299144.
Der volle Inhalt der QuelleMarshall, Robert. „Preparation of bimetallic catalysts by surface organometallic chemistry“. Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265345.
Der volle Inhalt der QuelleChantry, Ruth L. „Characterising the structure and properties of bimetallic nanoparticles“. Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4500/.
Der volle Inhalt der QuelleKhimyak, Tetyana. „New bimetallic clusters - precursors for heterogeneous nano-catalysts“. Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620698.
Der volle Inhalt der QuelleWise, Anna MacDonald. „Characterisation of bimetallic alloy and core-shell electrocatalysts“. Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/341819/.
Der volle Inhalt der QuelleVan, Aswegen Sivan. „Exploring heterogeneous bimetallic nanoparticle catalysts for sustainable oxidations“. Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415218/.
Der volle Inhalt der QuelleSundavadra, Bharat Viram. „The organometallic chemistry of alkyne-bridged bimetallic complexes“. Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/272569.
Der volle Inhalt der QuelleLee, Adam Fraser. „Structural and catalytic properties of bimetallic Pd systems“. Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/273061.
Der volle Inhalt der QuelleDylla, Anthony Greg. „Synthesis, characterization and catalytic properties of bimetallic nanoparticles“. College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9609.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Chemistry and Biochemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Moon, Il Kweon. „Optical performance of bimetallic mirrors in thermal environments“. Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/279805.
Der volle Inhalt der Quelle